Download Free Mathematical Vector Optimization In Partially Ordered Linear Spaces Book in PDF and EPUB Free Download. You can read online Mathematical Vector Optimization In Partially Ordered Linear Spaces and write the review.

In vector optimization one investigates optimal elements such as minimal, strongly minimal, properly minimal or weakly minimal elements of a nonempty subset of a partially ordered linear space. The problem of determining at least one of these optimal elements, if they exist at all, is also called a vector optimization problem. Problems of this type can be found not only in mathematics but also in engineering and economics. Vector optimization problems arise, for example, in functional analysis (the Hahn-Banach theorem, the lemma of Bishop-Phelps, Ekeland's variational principle), multi-objective programming, multi-criteria decision making, statistics (Bayes solutions, theory of tests, minimal covariance matrices), approximation theory (location theory, simultaneous approximation, solution of boundary value problems) and cooperative game theory (cooperative n player differential games and, as a special case, optimal control problems).
This book discusses basic tools of partially ordered spaces and applies them to variational methods in Nonlinear Analysis and for optimizing problems. This book is aimed at graduate students and research mathematicians.
The theory of Vector Optimization is developed by a systematic usage of infimum and supremum. In order to get existence and appropriate properties of the infimum, the image space of the vector optimization problem is embedded into a larger space, which is a subset of the power set, in fact, the space of self-infimal sets. Based on this idea we establish solution concepts, existence and duality results and algorithms for the linear case. The main advantage of this approach is the high degree of analogy to corresponding results of Scalar Optimization. The concepts and results are used to explain and to improve practically relevant algorithms for linear vector optimization problems.
This volume provides an elementary yet comprehensive introduction to representations of partially ordered sets and bimodule matrix problems, and their use in representation theory of algebras. It includes a discussion of representation types of algebras and partially ordered sets. Various characterizations of representation-finite and representation-tame partially ordered sets are offered and a description of their indecomposable representations is given. Auslander-Reiten theory is demonstrated together with a computer accessible algorithm for determining in decomposable representations and the Auslander-Reiten quiver of any representation-finite partially ordered set.
In vector optimization one investigates optimal elements such as min imal, strongly minimal, properly minimal or weakly minimal elements of a nonempty subset of a partially ordered linear space. The prob lem of determining at least one of these optimal elements, if they exist at all, is also called a vector optimization problem. Problems of this type can be found not only in mathematics but also in engineer ing and economics. Vector optimization problems arise, for exam ple, in functional analysis (the Hahn-Banach theorem, the lemma of Bishop-Phelps, Ekeland's variational principle), multiobjective pro gramming, multi-criteria decision making, statistics (Bayes solutions, theory of tests, minimal covariance matrices), approximation theory (location theory, simultaneous approximation, solution of boundary value problems) and cooperative game theory (cooperative n player differential games and, as a special case, optimal control problems). In the last decade vector optimization has been extended to problems with set-valued maps. This new field of research, called set optimiza tion, seems to have important applications to variational inequalities and optimization problems with multivalued data. The roots of vector optimization go back to F. Y. Edgeworth (1881) and V. Pareto (1896) who has already given the definition of the standard optimality concept in multiobjective optimization. But in mathematics this branch of optimization has started with the leg endary paper of H. W. Kuhn and A. W. Tucker (1951). Since about v Vl Preface the end of the 60's research is intensively made in vector optimization.
This book presents fundamentals and comprehensive results regarding duality for scalar, vector and set-valued optimization problems in a general setting. One chapter is exclusively consecrated to the scalar and vector Wolfe and Mond-Weir duality schemes.
We always come cross several decision-making problems in our daily life. Such problems are always conflicting in which many different view points should be satisfied. In politics, business, industrial systems, management science, networks, etc. one often encounters such kind of problems. The most important and difficult part in such problems is the conflict between various objectives and goals. In these problems, one has to find the minimum(or maximum) for several objective functions. Such problems are called vector optimization problems (VOP),multi-criteria optimization problems or multi-objective optimization problems. This volume deals with several different topics / aspects of vector optimization theory ranging from the very beginning to the most recent one. It contains fourteen chapters written by different experts in the field of vector optimization.
This book collects research papers presented in the First Franco Romanian Conference on Optimization, Optimal Control and Partial Differential Equations held at lasi on 7-11 september 1992. The aim and the underlying idea of this conference was to take advantage of the new SOCial developments in East Europe and in particular in Romania to stimulate the scientific contacts and cooperation between French and Romanian mathematicians and teams working in the field of optimization and partial differential equations. This volume covers a large spectrum of problems and result developments in this field in which most of the participants have brought notable contributions. The following topics are discussed in the contributions presented in this volume. 1 -Variational methods in mechanics and physical models Here we mention the contributions of D. Cioranescu. P. Donato and H.I. Ene (fluid flows in dielectric porous media). R. Stavre (the impact of a jet with two fluids on a porous wall). C. Lefter and D. Motreanu (nonlinear eigenvalue problems with discontinuities). I. Rus (maximum principles for elliptic systems). and on asymptotic XII properties of solutions of evolution equations (R Latcu and M. Megan. R Luca and R Morozanu. R Faure). 2 -The controllabillty of Inflnlte dimensional and distributed parameter systems with the contribution of P. Grisvard (singularities and exact controllability for hyperbolic systems). G. Geymonat. P. Loreti and V. Valente (exact controllability of a shallow shell model). C.
The chapters in this volume, written by international experts from different fields of mathematics, are devoted to honoring George Isac, a renowned mathematician. These contributions focus on recent developments in complementarity theory, variational principles, stability theory of functional equations, nonsmooth optimization, and several other important topics at the forefront of nonlinear analysis and optimization.
Problems with multiple objectives and criteria are generally known as multiple criteria optimization or multiple criteria decision-making (MCDM) problems. So far, these types of problems have typically been modelled and solved by means of linear programming. However, many real-life phenomena are of a nonlinear nature, which is why we need tools for nonlinear programming capable of handling several conflicting or incommensurable objectives. In this case, methods of traditional single objective optimization and linear programming are not enough; we need new ways of thinking, new concepts, and new methods - nonlinear multiobjective optimization. Nonlinear Multiobjective Optimization provides an extensive, up-to-date, self-contained and consistent survey, review of the literature and of the state of the art on nonlinear (deterministic) multiobjective optimization, its methods, its theory and its background. The amount of literature on multiobjective optimization is immense. The treatment in this book is based on approximately 1500 publications in English printed mainly after the year 1980. Problems related to real-life applications often contain irregularities and nonsmoothnesses. The treatment of nondifferentiable multiobjective optimization in the literature is rather rare. For this reason, this book contains material about the possibilities, background, theory and methods of nondifferentiable multiobjective optimization as well. This book is intended for both researchers and students in the areas of (applied) mathematics, engineering, economics, operations research and management science; it is meant for both professionals and practitioners in many different fields of application. The intention has been to provide a consistent summary that may help in selecting an appropriate method for the problem to be solved. It is hoped the extensive bibliography will be of value to researchers.