Download Free Mathematical Theory And Computational Practice Book in PDF and EPUB Free Download. You can read online Mathematical Theory And Computational Practice and write the review.

This book constitutes the proceedings of the 5th Conference on Computability in Europe, CiE 2009, held in Heidelberg, Germany, during July 19-24, 2009. The 34 papers presented together with 17 invited lectures were carefully reviewed and selected from 100 submissions. The aims of the conference is to advance our theoretical understanding of what can and cannot be computed, by any means of computation. It is the largest international meeting focused on computability theoretic issues.
This text for graduate students discusses the mathematical foundations of statistical inference for building three-dimensional models from image and sensor data that contain noise--a task involving autonomous robots guided by video cameras and sensors. The text employs a theoretical accuracy for the optimization procedure, which maximizes the reliability of estimations based on noise data. The numerous mathematical prerequisites for developing the theories are explained systematically in separate chapters. These methods range from linear algebra, optimization, and geometry to a detailed statistical theory of geometric patterns, fitting estimates, and model selection. In addition, examples drawn from both synthetic and real data demonstrate the insufficiencies of conventional procedures and the improvements in accuracy that result from the use of optimal methods.
From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography
In terms of statistics, GIS offers many connections. With GIS, data are gathered, displayed, summarized, examined, and interpreted to discover patterns. Spatial Mathematics: Theory and Practice through Mapping uses GIS as a platform to teach mathematical concepts and skills through visualization of numbers. It examines theory and practice from disparate academic disciplines such as geography, mathematics, physics, and general social science. This approach allows students to grapple with biodiversity, crime, natural hazards, climate, energy, water, and other relevant real-world issues of the twenty-first century. Includes QR Codes Linked to Animated Maps, a Mapping Activity Site, or to an Interactive Webpage, Creating an Interactive Resource That Stays Relevant The book integrates competing philosophical views of the world: synthesis and analysis. These two approaches yield different results and employ different tools. This book considers both approaches to looking at real-world issues that have mathematics as a critical, but often unseen, component. This approach shows readers how to use mathematics to consider the broad problem at hand and to explore diverse realms in the worlds of geography and mathematics and in their interface. A truly interdisciplinary text, the book bridges the worlds of mathematics and geography and demonstrates how they are inextricably linked. It takes advantage of the convergence in citizen science, STEM education, and mapping that help readers become critical consumers of data—understanding its content, quality, limitations, and benefits. It provides thorough grounding in the analytical, statistical, and computational skills required for working in any field that uses geospatial technologies—not just surveyors and remote sensing analysts.
This is a textbook on classical polynomial and rational approximation theory for the twenty-first century. Aimed at advanced undergraduates and graduate students across all of applied mathematics, it uses MATLAB to teach the field’s most important ideas and results. Approximation Theory and Approximation Practice, Extended Edition differs fundamentally from other works on approximation theory in a number of ways: its emphasis is on topics close to numerical algorithms; concepts are illustrated with Chebfun; and each chapter is a PUBLISHable MATLAB M-file, available online. The book centers on theorems and methods for analytic functions, which appear so often in applications, rather than on functions at the edge of discontinuity with their seductive theoretical challenges. Original sources are cited rather than textbooks, and each item in the bibliography is accompanied by an editorial comment. In addition, each chapter has a collection of exercises, which span a wide range from mathematical theory to Chebfun-based numerical experimentation. This textbook is appropriate for advanced undergraduate or graduate students who have an understanding of numerical analysis and complex analysis. It is also appropriate for seasoned mathematicians who use MATLAB.
Formal Design Theory (PDT) is a mathematical theory of design. The main goal of PDT is to develop a domain independent core model of the design process. The book focuses the reader's attention on the process by which ideas originate and are developed into workable products. In developing PDT, we have been striving toward what has been expressed by the distinguished scholar Simon (1969): that "the science of design is possible and some day we will be able to talk in terms of well-established theories and practices. " The book is divided into five interrelated parts. The conceptual approach is presented first (Part I); followed by the theoretical foundations of PDT (Part II), and from which the algorithmic and pragmatic implications are deduced (Part III). Finally, detailed case-studies illustrate the theory and the methods of the design process (Part IV), and additional practical considerations are evaluated (Part V). The generic nature of the concepts, theory and methods are validated by examples from a variety of disciplines. FDT explores issues such as: algebraic representation of design artifacts, idealized design process cycle, and computational analysis and measurement of design process complexity and quality. FDT's axioms convey the assumptions of the theory about the nature of artifacts, and potential modifications of the artifacts in achieving desired goals or functionality. By being able to state these axioms explicitly, it is possible to derive theorems and corollaries, as well as to develop specific analytical and constructive methodologies.
Mathematics of Bioinformatics: Theory, Methods, and Applications provides a comprehensive format for connecting and integrating information derived from mathematical methods and applying it to the understanding of biological sequences, structures, and networks. Each chapter is divided into a number of sections based on the bioinformatics topics and related mathematical theory and methods. Each topic of the section is comprised of the following three parts: an introduction to the biological problems in bioinformatics; a presentation of relevant topics of mathematical theory and methods to the bioinformatics problems introduced in the first part; an integrative overview that draws the connections and interfaces between bioinformatics problems/issues and mathematical theory/methods/applications.
With the objective of making into a science the art of verifying computer programs (debugging), the author addresses both practical and theoretical aspects of the process. A classic of sequential program verification, this volume has been translated into almost a dozen other languages and is much in demand among graduate and advanced undergraduate computer science students. Subjects include computability (with discussions of finite automata and Turing machines); predicate calculus (basic notions, natural deduction, and the resolution method); verification of programs (both flowchart and algol-like programs); flowchart schemas (basic notions, decision problems, formalization in predicate calculus, and translation programs); and the fixpoint theory of programs (functions and functionals, recursive programs, and verification programs). The treamtent is self-contained, and each chapter concludes with bibliographic remarks, references, and problems.
An accessible introduction and essential reference for an approach to machine learning that creates highly accurate prediction rules by combining many weak and inaccurate ones. Boosting is an approach to machine learning based on the idea of creating a highly accurate predictor by combining many weak and inaccurate “rules of thumb.” A remarkably rich theory has evolved around boosting, with connections to a range of topics, including statistics, game theory, convex optimization, and information geometry. Boosting algorithms have also enjoyed practical success in such fields as biology, vision, and speech processing. At various times in its history, boosting has been perceived as mysterious, controversial, even paradoxical. This book, written by the inventors of the method, brings together, organizes, simplifies, and substantially extends two decades of research on boosting, presenting both theory and applications in a way that is accessible to readers from diverse backgrounds while also providing an authoritative reference for advanced researchers. With its introductory treatment of all material and its inclusion of exercises in every chapter, the book is appropriate for course use as well. The book begins with a general introduction to machine learning algorithms and their analysis; then explores the core theory of boosting, especially its ability to generalize; examines some of the myriad other theoretical viewpoints that help to explain and understand boosting; provides practical extensions of boosting for more complex learning problems; and finally presents a number of advanced theoretical topics. Numerous applications and practical illustrations are offered throughout.
Mathematics for Electrical Engineering and Computing embraces many applications of modern mathematics, such as Boolean Algebra and Sets and Functions, and also teaches both discrete and continuous systems - particularly vital for Digital Signal Processing (DSP). In addition, as most modern engineers are required to study software, material suitable for Software Engineering - set theory, predicate and prepositional calculus, language and graph theory - is fully integrated into the book.Excessive technical detail and language are avoided, recognising that the real requirement for practising engineers is the need to understand the applications of mathematics in everyday engineering contexts. Emphasis is given to an appreciation of the fundamental concepts behind the mathematics, for problem solving and undertaking critical analysis of results, whether using a calculator or a computer.The text is backed up by numerous exercises and worked examples throughout, firmly rooted in engineering practice, ensuring that all mathematical theory introduced is directly relevant to real-world engineering. The book includes introductions to advanced topics such as Fourier analysis, vector calculus and random processes, also making this a suitable introductory text for second year undergraduates of electrical, electronic and computer engineering, undertaking engineering mathematics courses.Dr Attenborough is a former Senior Lecturer in the School of Electrical, Electronic and Information Engineering at South Bank University. She is currently Technical Director of The Webbery - Internet development company, Co. Donegal, Ireland. - Fundamental principles of mathematics introduced and applied in engineering practice, reinforced through over 300 examples directly relevant to real-world engineering