Download Free Mathematical Theories Of Machine Learning Theory And Applications Book in PDF and EPUB Free Download. You can read online Mathematical Theories Of Machine Learning Theory And Applications and write the review.

This book studies mathematical theories of machine learning. The first part of the book explores the optimality and adaptivity of choosing step sizes of gradient descent for escaping strict saddle points in non-convex optimization problems. In the second part, the authors propose algorithms to find local minima in nonconvex optimization and to obtain global minima in some degree from the Newton Second Law without friction. In the third part, the authors study the problem of subspace clustering with noisy and missing data, which is a problem well-motivated by practical applications data subject to stochastic Gaussian noise and/or incomplete data with uniformly missing entries. In the last part, the authors introduce an novel VAR model with Elastic-Net regularization and its equivalent Bayesian model allowing for both a stable sparsity and a group selection. Provides a thorough look into the variety of mathematical theories of machine learning Presented in four parts, allowing for readers to easily navigate the complex theories Includes extensive empirical studies on both the synthetic and real application time series data.
This book studies mathematical theories of machine learning. The first part of the book explores the optimality and adaptivity of choosing step sizes of gradient descent for escaping strict saddle points in non-convex optimization problems. In the second part, the authors propose algorithms to find local minima in nonconvex optimization and to obtain global minima in some degree from the Newton Second Law without friction. In the third part, the authors study the problem of subspace clustering with noisy and missing data, which is a problem well-motivated by practical applications data subject to stochastic Gaussian noise and/or incomplete data with uniformly missing entries. In the last part, the authors introduce an novel VAR model with Elastic-Net regularization and its equivalent Bayesian model allowing for both a stable sparsity and a group selection.
This volume includes some of the key research papers in the area of machine learning produced at MIT and Siemens during a three-year joint research effort. It includes papers on many different styles of machine learning, organized into three parts. Part I, theory, includes three papers on theoretical aspects of machine learning. The first two use the theory of computational complexity to derive some fundamental limits on what isefficiently learnable. The third provides an efficient algorithm for identifying finite automata. Part II, artificial intelligence and symbolic learning methods, includes five papers giving an overview of the state of the art and future developments in the field of machine learning, a subfield of artificial intelligence dealing with automated knowledge acquisition and knowledge revision. Part III, neural and collective computation, includes five papers sampling the theoretical diversity and trends in the vigorous new research field of neural networks: massively parallel symbolic induction, task decomposition through competition, phoneme discrimination, behavior-based learning, and self-repairing neural networks.
Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.
The book reviews core concepts of machine learning (ML) while focusing on modern applications. It is aimed at those who want to advance their understanding of ML by providing technical and practical insights. It does not use complicated mathematics to explain how to benefit from ML algorithms. Unlike the existing literature, this work provides the core concepts with emphasis on fresh ideas and real application scenarios. It starts with the basic concepts of ML and extends the concepts to the different deep learning algorithms. The book provides an introduction and main elements of evaluation tools with Python and walks you through the recent applications of ML in self-driving cars, cognitive decision making, communication networks, security, and signal processing. The concept of generative networks is also presented and focuses on GANs as a tool to improve the performance of existing algorithms. In summary, this book provides a comprehensive technological path from fundamental theories to the categorization of existing algorithms, covers state-of-the-art, practical evaluation tools and methods to empower you to use synthetic data to improve the performance of applications.
Machine Learning Theory and Applications Enables readers to understand mathematical concepts behind data engineering and machine learning algorithms and apply them using open-source Python libraries Machine Learning Theory and Applications delves into the realm of machine learning and deep learning, exploring their practical applications by comprehending mathematical concepts and implementing them in real-world scenarios using Python and renowned open-source libraries. This comprehensive guide covers a wide range of topics, including data preparation, feature engineering techniques, commonly utilized machine learning algorithms like support vector machines and neural networks, as well as generative AI and foundation models. To facilitate the creation of machine learning pipelines, a dedicated open-source framework named hephAIstos has been developed exclusively for this book. Moreover, the text explores the fascinating domain of quantum machine learning and offers insights on executing machine learning applications across diverse hardware technologies such as CPUs, GPUs, and QPUs. Finally, the book explains how to deploy trained models through containerized applications using Kubernetes and OpenShift, as well as their integration through machine learning operations (MLOps). Additional topics covered in Machine Learning Theory and Applications include: Current use cases of AI, including making predictions, recognizing images and speech, performing medical diagnoses, creating intelligent supply chains, natural language processing, and much more Classical and quantum machine learning algorithms such as quantum-enhanced Support Vector Machines (QSVMs), QSVM multiclass classification, quantum neural networks, and quantum generative adversarial networks (qGANs) Different ways to manipulate data, such as handling missing data, analyzing categorical data, or processing time-related data Feature rescaling, extraction, and selection, and how to put your trained models to life and production through containerized applications Machine Learning Theory and Applications is an essential resource for data scientists, engineers, and IT specialists and architects, as well as students in computer science, mathematics, and bioinformatics. The reader is expected to understand basic Python programming and libraries such as NumPy or Pandas and basic mathematical concepts, especially linear algebra.
Machine learning is currently one of the most rapidly growing areas of research in computer science. In compiling this volume we have brought together contributions from some of the most prestigious researchers in this field. This book covers the three main learning systems; symbolic learning, neural networks and genetic algorithms as well as providing a tutorial on learning casual influences. Each of the nine chapters is self-contained. Both theoreticians and application scientists/engineers in the broad area of artificial intelligence will find this volume valuable. It also provides a useful sourcebook for Postgraduate since it shows the direction of current research.
Statistical learning and analysis techniques have become extremely important today, given the tremendous growth in the size of heterogeneous data collections and the ability to process it even from physically distant locations. Recent advances made in the field of machine learning provide a strong framework for robust learning from the diverse corpora and continue to impact a variety of research problems across multiple scientific disciplines. The aim of this handbook is to familiarize beginners as well as experts with some of the recent techniques in this field.The Handbook is divided in two sections: Theory and Applications, covering machine learning, data analytics, biometrics, document recognition and security. Very relevant to current research challenges faced in various fields Self-contained reference to machine learning Emphasis on applications-oriented techniques
This edited book is a collection of chapters invited and presented by experts at 10th industry symposium held during 9–12 January 2020 in conjunction with 16th edition of ICDCIT. The book covers topics, like machine learning and its applications, statistical learning, neural network learning, knowledge acquisition and learning, knowledge intensive learning, machine learning and information retrieval, machine learning for web navigation and mining, learning through mobile data mining, text and multimedia mining through machine learning, distributed and parallel learning algorithms and applications, feature extraction and classification, theories and models for plausible reasoning, computational learning theory, cognitive modelling and hybrid learning algorithms.
Inequality has become an essential tool in many areas of mathematical research, for example in probability and statistics where it is frequently used in the proofs. "Probability Inequalities" covers inequalities related with events, distribution functions, characteristic functions, moments and random variables (elements) and their sum. The book shall serve as a useful tool and reference for scientists in the areas of probability and statistics, and applied mathematics. Prof. Zhengyan Lin is a fellow of the Institute of Mathematical Statistics and currently a professor at Zhejiang University, Hangzhou, China. He is the prize winner of National Natural Science Award of China in 1997. Prof. Zhidong Bai is a fellow of TWAS and the Institute of Mathematical Statistics; he is a professor at the National University of Singapore and Northeast Normal University, Changchun, China.