Download Free Mathematical Tables Part Volume B The Airy Integral Book in PDF and EPUB Free Download. You can read online Mathematical Tables Part Volume B The Airy Integral and write the review.

Originally published in 1946, this book contains a series of tables with data relating to the Airy function.
The Nobel Laureate's monumental study surveys hydrodynamic and hydromagnetic stability as a branch of experimental physics, surveying thermal instability of a layer of fluid heated from below, Benard problem, more.
This book is written for scientists and engineers whose work involves wave reflec tion or transmission. Most of the book is written in the language of electromagnetic theory, but, as the title suggests, many of the results can be applied to particle waves, specifically to those satisfying the Schr6dinger equation. The mathematical connection between electromagnetic s (or TE) waves and quantum particle waves is established in Chapter 1. The main results for s waves are translated into quantum mechanical language in the Appendix. There is also a close analogy between acoustic waves and electromagnetic p (or TM) waves, as shown in Section 1-4. Thus the book, though primarily intended for those working in optics, microwaves and radio, will be of use to physicists, chemists and electrical engineers studying reflection and transmission of particles at potential barriers. The tech niques developed here can also be used by those working in acoustics, ocean ography and seismology. Chapter 1 is recommended for all readers: it introduces reflection phenomena, defines the notation, and previews (in Section 1-6) the contents of the rest of the book. This preview will not be duplicated here. We note only that applied topics do appear: two examples are the important phenomenon of attenuated total reflection in Chapter 8, and the reflectivity of multilayer dielectric mirrors in Chapter 12. The subject matter is restricted to linear classical electrodynamics in non-magnetic media, and the corresponding particle analogues.
Physics of Nuclei and Particles, Volume II explores the prevalent descriptive methods used in nuclear and particle physics, with emphasis on the phenomenological and model-based aspects. The interactions of nuclear particles are discussed, along with nuclear forces and potentials and scattering and reaction models employed in nuclear physics. The nuclear structure and models of the nucleus are also considered. Comprised of four chapters, this volume begins with a review of the characteristics of nucleons and other particles that play a role in nuclear interaction processes in order to gain further insight into the underlying physical problems. Neutron physics, antinucleons, deuteron physics, and two-body nuclear forces are highlighted, together with three- and four- nucleon systems and heavy-ion physics. The next three chapters deal with nuclear forces and potentials, as deduced from nuclear dynamics (scattering and polarization); scattering and reaction models used in nuclear physics; and nuclear models such as the shell model, models of deformed nuclei, and many-body self-consistent models. The book concludes with an analysis of the Brueckner-Bethe-Goldstone theory of nuclear matter. This book will be of interest to physicists.
Terrestrial Propagation of Long Electromagnetic Waves deals with the propagation of long electromagnetic waves confined principally to the shell between the earth and the ionosphere, known as the terrestrial waveguide. The discussion is limited to steady-state solutions in a waveguide that is uniform in the direction of propagation. Wave propagation is characterized almost exclusively by mode theory. The mathematics are developed only for sources at the ground surface or within the waveguide, including artificial sources as well as lightning discharges. This volume is comprised of nine chapters and begins with an introduction to the fundamental concepts of wave propagation in a planar and curved isotropic waveguide. A number of examples are presented to illustrate the effects of an anisotropic ionosphere. The basic equations are summarized and plane-wave reflection from a dielectric interface is considered, along with the superposition of two obliquely incident plane waves. The properties of waveguide boundaries are implicitly represented by Fresnel reflection coefficients. Subsequent chapters focus on boundaries of the terrestrial guide; lightning discharges as a natural source of extremely-low-frequency and very-low-frequency radiation; and the mode theory for waves in an isotropic spherical shell. This book will be a useful resource for students and practitioners of physics.