Download Free Mathematical Simulation In Glass Technology Book in PDF and EPUB Free Download. You can read online Mathematical Simulation In Glass Technology and write the review.

This is the first book on mathematical simulation on glass technology, and covers all production steps of special glass manufacturing. The enclosed CD-ROM shows 27 simulations of different aspects, such as surprising details of the pressing and casting process.
This volume presents a review of advanced technological problems in the glass industry and of the mathematics involved. It is amazing that such a seemingly small research area is extremely rich and calls for an impressively large variety of mathematical methods, including numerical simulations of considerable complexity. The problems treated here are very typical of the field of glass manufacturing and cover a large spectrum of complementary subjects: injection molding by various techniques, radiative heat transfer in glass, nonisothermal flows and fibre spinning. The book can certainly be useful not only to applied mathematicians, but also to physicists and engineers, who can find in it an overview of the most advanced models and methods.
This Encyclopedia begins with an introduction summarizing itsscope and content. Glassmaking; Structure of Glass, GlassPhysics,Transport Properties, Chemistry of Glass, Glass and Light,Inorganic Glass Families, Organic Glasses, Glass and theEnvironment, Historical and Economical Aspect of Glassmaking,History of Glass, Glass and Art, and outlinepossible newdevelopments and uses as presented by the best known people in thefield (C.A. Angell, for example). Sections and chapters arearranged in a logical order to ensure overall consistency and avoiduseless repetitions. All sections are introduced by a briefintroduction and attractive illustration. Newly investigatedtopics will be addresses, with the goal of ensuring that thisEncyclopedia remains a reference work for years to come.
This handbook provides comprehensive treatment of the current state of glass science from the leading experts in the field. Opening with an enlightening contribution on the history of glass, the volume is then divided into eight parts. The first part covers fundamental properties, from the current understanding of the thermodynamics of the amorphous state, kinetics, and linear and nonlinear optical properties through colors, photosensitivity, and chemical durability. The second part provides dedicated chapters on each individual glass type, covering traditional systems like silicates and other oxide systems, as well as novel hybrid amorphous materials and spin glasses. The third part features detailed descriptions of modern characterization techniques for understanding this complex state of matter. The fourth part covers modeling, from first-principles calculations through molecular dynamics simulations, and statistical modeling. The fifth part presents a range of laboratory and industrial glass processing methods. The remaining parts cover a wide and representative range of applications areas from optics and photonics through environment, energy, architecture, and sensing. Written by the leading international experts in the field, the Springer Handbook of Glass represents an invaluable resource for graduate students through academic and industry researchers working in photonics, optoelectronics, materials science, energy, architecture, and more.
This book highlights recent developments in fiberglass research and technology development, including high-performance fiberglass chemistry; in-depth glass network structure information derived from the-state-of-the-art spectroscopic measurements, molecular dynamics simulations, and their correlations with properties; fiber surface chemistry in relation to sizing chemistry - a critical part of composite performance; fiber process stability; fundamental understanding of the batch-to-melt conversion processes and melt flow simulations; and environmental concerns such as energy efficiency and emission of volatile species, which are key to environmentally-friendly product manufacturing. The book aims to guide fiberglass researchers and manufacturers towards better awareness and, perhaps, provides potential options for global ecosystem management. More than 500 current references are included, which will enable researchers from fiber glass industry and research institution access to the most recent progress in fiberglass science and technology. Advances scientific understanding of fiberglass-forming processes, rising in popularity as a building material throughout the world; Describes the current advances in the structure and formation of fiber glass, beginning with chemistry, a wide range of characterizations, and processes, through to applications; Contains information on environmental aspects of fiberglass production, addressing energy consumption and emission.
Although many books have been written on computational fluid dynamics (CFD) and many written on combustion, most contain very limited coverage of the combination of CFD and industrial combustion. Furthermore, most of these books are written at an advanced academic level, emphasize theory over practice, and provide little help to engineers who need
This volume is part of the Ceramic Engineering and Science Proceeding (CESP) series. This series contains a collection of papers dealing with issues in both traditional ceramics (i.e., glass, whitewares, refractories, and porcelain enamel) and advanced ceramics. Topics covered in the area of advanced ceramic include bioceramics, nanomaterials, composites, solid oxide fuel cells, mechanical properties and structural design, advanced ceramic coatings, ceramic armor, porous ceramics, and more.
This volume is addressed to people who are interested in modern mathematical solutions for real life applications. In particular, mathematical modeling, simulation and optimization is nowadays successfully used in various fields of application, like the energy- or health-sector. Here, mathematics is often the driving force for new innovations and most relevant for the success of many interdisciplinary projects. The presented chapters demonstrate the power of this emerging research field and show how society can benefit from applied mathematics.
Ceramic Engineering and Science Proceedings Volume 35, Issue 1, 74th Conference on Glass Problems S.K. Sundaram, Editor In continuing the tradition that dates back to 1934, this volume is a collection of 25 papers presented at the 74th Glass Problems Conference, October 14–17, 2013 in Columbus, Ohio. These papers are essential reading for all who need to stay abreast of the latest research in the glass manufacturing field. Content is grouped into the below five sections: Batching and Forming Glass Melting Modeling, Sensing and Control Refractories I Refractories II
This book presents new research related to the mathematical modelling of engineering and environmental processes, manufacturing, and industrial systems. It includes heat transfer, fluid mechanics, CFD, and transport phenomena; solid mechanics and mechanics of metals; electromagnets and MHD; reliability modelling and system optimisation; finite volume, finite element, and boundary element procedures; decision sciences in an industrial and manufacturing context; civil engineering systems and structures; mineral and energy resources; relevant software engineering issues associated with CAD and CAE; and materials and metallurgical engineering.