Download Free Mathematical Physics In One Dimension Book in PDF and EPUB Free Download. You can read online Mathematical Physics In One Dimension and write the review.

Mathematical Physics in One Dimension: Exactly Soluble Models of Interacting Particles covers problems of mathematical physics with one-dimensional analogs. The book discusses classical statistical mechanics and phase transitions; the disordered chain of harmonic oscillators; and electron energy bands in ordered and disordered crystals. The text also describes the many-fermion problem; the theory of the interacting boson gas; the theory of the antiferromagnetic linear chains; and the time-dependent phenomena of many-body systems (i.e., classical or quantum-mechanical dynamics). Physicists and mathematicians will find the book invaluable.
This volume presents in a pedagogical yet complete way correlated systems in one dimension. After an introduction to the basic concepts of correlated systems, it gives a step-by-step description of the techniques needed to treat one dimension, and discusses the resulting physics.
A modern classic, this clearly written, incisive textbook provides a comprehensive, detailed survey of the functions of mathematical physics, a field of study straddling the somewhat artificial boundary between pure and applied mathematics. In the 18th and 19th centuries, the theorists who devoted themselves to this field — pioneers such as Gauss, Euler, Fourier, Legendre, and Bessel — were searching for mathematical solutions to physical problems. Today, although most of the functions have practical applications, in areas ranging from the quantum-theoretical model of the atom to the vibrating membrane, some, such as those related to the theory of discontinuous groups, still remain of purely mathematical interest. Chapters One and Two examine orthogonal polynomials, with sections on such topics as the recurrence formula, the Christoffel-Darboux formula, the Weierstrass approximation theorem, and the application of Hermite polynomials to quantum mechanics. Chapter Three is devoted to the principal properties of the gamma function, including asymptotic expansions and Mellin-Barnes integrals. Chapter Four covers hypergeometric functions, including a review of linear differential equations with regular singular points, and a general method for finding integral representations. Chapters Five and Six are concerned with the Legendre functions and their use in the solutions of Laplace's equation in spherical coordinates, as well as problems in an n-dimension setting. Chapter Seven deals with confluent hypergeometric functions, and Chapter Eight examines, at length, the most important of these — the Bessel functions. Chapter Nine covers Hill's equations, including the expansion theorems.
This book differs from its predecessor, Lieb & Mattis Mathematical Physics in One Dimension, in a number of important ways. Classic discoveries which once had to be omitted owing to lack of space ? such as the seminal paper by Fermi, Pasta and Ulam on lack of ergodicity of the linear chain, or Bethe's original paper on the Bethe ansatz ? can now be incorporated. Many applications which did not even exist in 1966 (some of which were originally spawned by the publication of Lieb & Mattis) are newly included. Among these, this new book contains critical surveys of a number of important developments: the exact solution of the Hubbard model, the concept of spinons, the Haldane gap in magnetic spin-one chains, bosonization and fermionization, solitions and the approach to thermodynamic equilibrium, quantum statistical mechanics, localization of normal modes and eigenstates in disordered chains, and a number of other contemporary concerns.
In 1966, E.H. Lieb and D.C. r1attis published a book on "Mathematical Physics in One Dimension" [Academic Press, New York and London] which is much more than just a collection of reprints and which in fact marked the beginnings of the rapidly growing interest in one-dimensional problems and materials in the 1970's. In their Foreword, Lieb and r~attis made the observation that " ... there now exists a vast literature on this subject, albeit one which is not indexed under the topic "one dimension" in standard indexing journals and which is therefore hard to research ... ". Today, the situation is even worse, and we hope that these Proceedings will be a valuable guide to some of the main current areas of one-dimensional physics. From a theoretical point of view, one-dimensional problems have always been very attractive. Many non-trivial models are soluble in one dimension, while they are only approximately understood in three dimensions. Therefore, the corresponding exact solutions serve as a useful test of approximate ma thematical methods, and certain features of the one-dimensional solution re main relevant in higher dimensions. On the other hand, many important phe nomena are strongly enhanced, and many concepts show up especially clearly in one-dimensional or quasi -one-dimensional systems. Among them are the ef fects of fluctuations, of randomness, and of nonlinearity; a number of in teresting consequences are specific to one dimension.