Download Free Mathematical Optimization Of Water Networks Book in PDF and EPUB Free Download. You can read online Mathematical Optimization Of Water Networks and write the review.

Water supply- and drainage systems and mixed water channel systems are networks whose high dynamic is determined and/or affected by consumer habits on drinking water on the one hand and by climate conditions, in particular rainfall, on the other hand. According to their size, water networks consist of hundreds or thousands of system elements. Moreover, different types of decisions (continuous and discrete) have to be taken in the water management. The networks have to be optimized in terms of topology and operation by targeting a variety of criteria. Criteria may for example be economic, social or ecological ones and may compete with each other. The development of complex model systems and their use for deriving optimal decisions in water management is taking place at a rapid pace. Simulation and optimization methods originating in Operations Research have been used for several decades; usually with very limited direct cooperation with applied mathematics. The research presented here aims at bridging this gap, thereby opening up space for synergies and innovation. It is directly applicable for relevant practical problems and has been carried out in cooperation with utility and dumping companies, infrastructure providers and planning offices. A close and direct connection to the practice of water management has been established by involving application-oriented know-how from the field of civil engineering. On the mathematical side all necessary disciplines were involved, including mixed-integer optimization, multi-objective and facility location optimization, numerics for cross-linked dynamic transportation systems and optimization as well as control of hybrid systems. Most of the presented research has been supported by the joint project „Discret-continuous optimization of dynamic water systems“ of the federal ministry of education and research (BMBF).
Design of water distribution networks is traditionally based on trial-and-approach in which the designer assumes, based on experience and judgment, sizes of different elements and successively modifies them until a network with satisfactory hydraulic performance is obtained. This text covers: Essential hydraulic, economic optimization principles. Theory is developed gradually for optimal design of simple, single-source branched networks subjected to single loading to complex, multiple-source looped networks subjected to multiple loading. Strengthening and expansion of existing networks and also reliability-based design. Several illustrative examples enabling the reader to apply them in practice- approximately 100 line drawings.
Water Engineering Modeling and Mathematic Tools provides an informative resource for practitioners who want to learn more about different techniques and models in water engineering and their practical applications and case studies. The book provides modelling theories in an easy-to-read format verified with on-site models for specific regions and scenarios. Users will find this to be a significant contribution to the development of mathematical tools, experimental techniques, and data-driven models that support modern-day water engineering applications. Civil engineers, industrialists, and water management experts should be familiar with advanced techniques that can be used to improve existing systems in water engineering. This book provides key ideas on recently developed machine learning methods and AI modelling. It will serve as a common platform for practitioners who need to become familiar with the latest developments of computational techniques in water engineering. - Includes firsthand experience about artificial intelligence models, utilizing case studies - Describes biological, physical and chemical techniques for the treatment of surface water, groundwater, sea water and rain/snow - Presents the application of new instruments in water engineering
This book presents mathematical models of demand-side management programs, together with operational and control problems for power and renewable energy systems. It reflects the need for optimal operation and control of today’s electricity grid at both the supply and demand spectrum of the grid. This need is further compounded by the advent of smart grids, which has led to increased customer/consumer participation in power and renewable energy system operations. The book begins by giving an overview of power and renewable energy systems, demand-side management programs and algebraic modeling languages. The overview includes detailed consideration of appliance scheduling algorithms, price elasticity matrices and demand response incentives. Furthermore, the book presents various power system operational and control mathematical formulations, incorporating demand-side management programs. The mathematical formulations developed are modeled and solved using the Advanced Interactive Multidimensional Modeling System (AIMMS) software, which offers a powerful yet simple algebraic modeling language for solving optimization problems. The book is extremely useful for all power system operators and planners who are concerned with optimal operational procedures for managing today’s complex grids, a context in which customers are active participants and can curb/control their demand. The book details how AIMMS can be a useful tool in optimizing power grids and also offers a valuable research aid for students and academics alike.
This book offers a state-of-the-art introduction to the mathematical theory of supply chain networks, focusing on those described by partial differential equations. The authors discuss modeling of complex supply networks as well as their mathematical theory, explore modeling, simulation, and optimization of some of the discussed models, and present analytical and numerical results on optimization problems. Real-world examples are given to demonstrate the applicability of the presented approaches. Graduate students and researchers who are interested in the theory of supply chain networks described by partial differential equations will find this book useful. It can also be used in advanced graduate-level courses on modeling of physical phenomena as well as introductory courses on supply chain theory.