Download Free Mathematical Models Of Natural Systems Book in PDF and EPUB Free Download. You can read online Mathematical Models Of Natural Systems and write the review.

This short textbook introduces students to the concept of describing natural systems using mathematical models. We highlight the variety of ways in which natural systems lend themselves to mathematical description and the importance of models in revealing fundamental processes. The process of science via the building, testing and use of models (theories) is described and forms the structure of the book. The book covers a broad range from the molecular to ecosystems and whole-Earth phenomena. Themes running through the chapters include scale (temporal and spatial), change (linear and nonlinear), emergent phenomena and uncertainty. Mathematical descriptions are kept to a minimum and we illustrate mechanisms and results in graphical form wherever possible. Essential mathematical details are described fully, with the use of boxes. The mathematics supports but does not lead the text.
Systems and their mathematical description play an important role in all branches of science. This book offers an introduction to mathematical modeling techniques. It is intended for undergrad students in applied natural science, in particular earth and environmental science, environmental engineering, as well as ecology, environmental chemistry, chemical engineering, agronomy, and forestry. The focus is on developing the basic methods of modeling. Students will learn how to build mathematical models of their own, but also how to analyze the properties of existing models. The book neither derives mathematical formulae, nor does it describe modeling software, instead focusing on the fundamental concepts behind mathematical models. A formulary in the appendix summarizes the necessary mathematical knowledge. To support independent learners, numerous examples and problems from various scientific disciplines are provided throughout the book. Thanks in no small part to the cartoons by Nikolas Stürchler, this introduction to the colorful world of modeling is both entertaining and rich in content
This is a book about the nature of mathematical modeling, and about the kinds of techniques that are useful for modeling. The text is in four sections. The first covers exact and approximate analytical techniques; the second, numerical methods; the third, model inference based on observations; and the last, the special role of time in modeling. Each of the topics in the book would be the worthy subject of a dedicated text, but only by presenting the material in this way is it possible to make so much material accessible to so many people. Each chapter presents a concise summary of the core results in an area. The text is complemented by extensive worked problems.
A concise guide to representing complex Earth systems using simple dynamic models Mathematical Modeling of Earth's Dynamical Systems gives earth scientists the essential skills for translating chemical and physical systems into mathematical and computational models that provide enhanced insight into Earth's processes. Using a step-by-step method, the book identifies the important geological variables of physical-chemical geoscience problems and describes the mechanisms that control these variables. This book is directed toward upper-level undergraduate students, graduate students, researchers, and professionals who want to learn how to abstract complex systems into sets of dynamic equations. It shows students how to recognize domains of interest and key factors, and how to explain assumptions in formal terms. The book reveals what data best tests ideas of how nature works, and cautions against inadequate transport laws, unconstrained coefficients, and unfalsifiable models. Various examples of processes and systems, and ample illustrations, are provided. Students using this text should be familiar with the principles of physics, chemistry, and geology, and have taken a year of differential and integral calculus. Mathematical Modeling of Earth's Dynamical Systems helps earth scientists develop a philosophical framework and strong foundations for conceptualizing complex geologic systems. Step-by-step lessons for representing complex Earth systems as dynamical models Explains geologic processes in terms of fundamental laws of physics and chemistry Numerical solutions to differential equations through the finite difference technique A philosophical approach to quantitative problem-solving Various examples of processes and systems, including the evolution of sandy coastlines, the global carbon cycle, and much more Professors: A supplementary Instructor's Manual is available for this book. It is restricted to teachers using the text in courses. For information on how to obtain a copy, refer to: http://press.princeton.edu/class_use/solutions.html
There isprobably no more appropriate location to hold a course on mathematical ecology than Italy, the countryofVito Volterra, a founding father ofthe subject. The Trieste 1982Autumn Course on Mathematical Ecology consisted of four weeksofvery concentrated scholasticism and aestheticism. The first weeks were devoted to fundamentals and principles ofmathematicalecology. A nucleusofthe material from the lectures presented during this period constitutes this book. The final week and a half of the Course was apportioned to the Trieste Research Conference on Mathematical Ecology whose proceedings have been published as Volume 54, Lecture Notes in Biomathematics, Springer-Verlag. The objectivesofthe first portionofthe course wereambitious and, probably, unattainable. Basic principles of the areas of physiological, population, com munitY, and ecosystem ecology that have solid ecological and mathematical foundations were to be presented. Classical terminology was to be introduced, important fundamental topics were to be developed, some past and some current problems of interest were to be presented, and directions for possible research were to be provided. Due to time constraints, the coverage could not be encyclopedic;many areas covered already have merited treatises of book length. Consequently, preliminary foundation material was covered in some detail, but subject overviewsand area syntheseswerepresented when research frontiers were being discussed. These lecture notes reflect this course philosophy.
This book develops the mathematical tools essential for students in the life sciences to describe interacting systems and predict their behavior. From predator-prey populations in an ecosystem, to hormone regulation within the body, the natural world abounds in dynamical systems that affect us profoundly. Complex feedback relations and counter-intuitive responses are common in nature; this book develops the quantitative skills needed to explore these interactions. Differential equations are the natural mathematical tool for quantifying change, and are the driving force throughout this book. The use of Euler’s method makes nonlinear examples tractable and accessible to a broad spectrum of early-stage undergraduates, thus providing a practical alternative to the procedural approach of a traditional Calculus curriculum. Tools are developed within numerous, relevant examples, with an emphasis on the construction, evaluation, and interpretation of mathematical models throughout. Encountering these concepts in context, students learn not only quantitative techniques, but how to bridge between biological and mathematical ways of thinking. Examples range broadly, exploring the dynamics of neurons and the immune system, through to population dynamics and the Google PageRank algorithm. Each scenario relies only on an interest in the natural world; no biological expertise is assumed of student or instructor. Building on a single prerequisite of Precalculus, the book suits a two-quarter sequence for first or second year undergraduates, and meets the mathematical requirements of medical school entry. The later material provides opportunities for more advanced students in both mathematics and life sciences to revisit theoretical knowledge in a rich, real-world framework. In all cases, the focus is clear: how does the math help us understand the science?
Nowadays, environmental issues including air and water pollution, climate change, overexploitation of marine ecosystems, exhaustion of fossil resources, conservation of biodiversity are receiving major attention from the public, stakeholders and scholars from the local to the planetary scales. It is now clearly recognized that human activities yield major ecological and envir- mental stresses with irreversible loss of species, destruction of habitat or c- matecatastrophesasthemostdramaticexamplesoftheire?ects.Infact,these anthropogenic activities impact not only the states and dynamics of natural resources and ecosystems but also alter human health, well-being, welfare and economic wealth since these resources are support features for human life. The numerous outputs furnished by nature include direct goods such as food, drugs, energy along with indirect services such as the carbon cycle, the water cycle and pollination, to cite but a few. Hence, the various ecological changes our world is undergoing draw into question our ability to sustain economic production, wealth and the evolution of technology by taking natural systems into account. The concept of “sustainable development” covers such concerns, although no universal consensus exists about this notion. Sustainable development - phasizes the need to organize and control the dynamics and the complex - teractions between man, production activities, and natural resources in order to promote their coexistence and their common evolution. It points out the importance of studying the interfaces between society and nature, and es- ciallythecouplingbetweeneconomicsandecology.Itinducesinterdisciplinary scienti?c research for the assessment, the conservation and the management of natural resources.
Mathematical Models is a component of Encyclopedia of Mathematical Sciences in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. The Theme on Mathematical Models discusses matters of great relevance to our world such as: Basic Principles of Mathematical Modeling; Mathematical Models in Water Sciences; Mathematical Models in Energy Sciences; Mathematical Models of Climate and Global Change; Infiltration and Ponding; Mathematical Models of Biology; Mathematical Models in Medicine and Public Health; Mathematical Models of Society and Development. These three volumes are aimed at the following five major target audiences: University and College students Educators, Professional practitioners, Research personnel and Policy analysts, managers, and decision makers and NGOs.
This book demonstrates how mathematical models constructed in system dynamics modelling platforms, such as Vensim, can be used for long-term management of environmental change. It is divided into two sections, with the first dedicated to theory, where the theory of co-evolutionary modelling and its use in the system dynamics model platform is developed. The book takes readers through the steps in the modelling process, different validation tools applicable to these types of models and different growth specification, as well as how to curve fit using numerical methods in Vensim. Section 2 comprises of a collection of applied case studies, including fisheries, game theory and wildlife management. The book concludes with lessons from the use of co-evolutionary models for long-term natural resource management. The book will be of great interest to students and scholars of environmental economics, natural resource management, system dynamics, ecological modelling and bioeconomics.