Download Free Mathematical Models For Biological Networks And Machine Learning With Applications Book in PDF and EPUB Free Download. You can read online Mathematical Models For Biological Networks And Machine Learning With Applications and write the review.

This book provides the most valuable and updated research on computational and mathematical models in biological systems from influential researchers around the world and contributes to the development of future research guidelines in this topic. Topics include (but are not limited to): modeling infectious and dynamic diseases; regulation of cell function; biological pattern formation; biological networks; tumor growth and angiogenesis; complex biological systems; Monte Carlo methods; Control theory, optimization and their applications
Despite major advances in healthcare over the past century, the successful treatment of cancer has remained a significant challenge, and cancers are the second leading cause of death worldwide behind cardiovascular disease. Early detection and survival are important issues to control cancer. The development of quantitative methods and computer technology has facilitated the formation of new models in medical and biological sciences. The application of mathematical modelling in solving many real-world problems in medicine and biology has yielded fruitful results. In spite of advancements in instrumentations technology and biomedical equipment, it is not always possible to perform experiments in medicine and biology for various reasons. Thus, mathematical modelling and simulation are viewed as viable alternatives in such situations, and are discussed in this book. The conventional diagnostic techniques of cancer are not always effective as they rely on the physical and morphological appearance of the tumour. Early stage prediction and diagnosis is very difficult with conventional techniques. It is well known that cancers are involved in genome level changes. As of now, the prognosis of various types of cancer depends upon findings related to the data generated through different experiments. Several machine learning techniques exist in analysing the data of expressed genes; however, the recent results related with deep learning algorithms are more accurate and accommodative, as they are effective in selecting and classifying informative genes. This book explores the probabilistic computational deep learning model for cancer classification and prediction.
This book presents a range of current research topics in biological network modeling, as well as its application in studies on human hosts, pathogens, and diseases. Systems biology is a rapidly expanding field that involves the study of biological systems through the mathematical modeling and analysis of large volumes of biological data. Gathering contributions from renowned experts in the field, some of the topics discussed in depth here include networks in systems biology, the computational modeling of multidrug-resistant bacteria, and systems biology of cancer. Given its scope, the book is intended for researchers, advanced students, and practitioners of systems biology. The chapters are research-oriented, and present some of the latest findings on their respective topics.
Volume I of this two-volume, interdisciplinary work is a unified presentation of a broad range of state-of-the-art topics in the rapidly growing field of mathematical modeling in the biological sciences. The chapters are thematically organized into the following main areas: cellular biophysics, regulatory networks, developmental biology, biomedical applications, data analysis and model validation. The work will be an excellent reference text for a broad audience of researchers, practitioners, and advanced students in this rapidly growing field at the intersection of applied mathematics, experimental biology and medicine, computational biology, biochemistry, computer science, and physics.
This book presents an exciting collection of contributions based on the workshop “Bringing Maths to Life” held October 27-29, 2014 in Naples, Italy. The state-of-the art research in biology and the statistical and analytical challenges facing huge masses of data collection are treated in this Work. Specific topics explored in depth surround the sessions and special invited sessions of the workshop and include genetic variability via differential expression, molecular dynamics and modeling, complex biological systems viewed from quantitative models, and microscopy images processing, to name several. In depth discussions of the mathematical analysis required to extract insights from complex bodies of biological datasets, to aid development in the field novel algorithms, methods and software tools for genetic variability, molecular dynamics, and complex biological systems are presented in this book. Researchers and graduate students in biology, life science, and mathematics/statistics will find the content useful as it addresses existing challenges in identifying the gaps between mathematical modeling and biological research. The shared solutions will aid and promote further collaboration between life sciences and mathematics.
Explore the multidisciplinary nature of complex networks through machine learning techniques Statistical and Machine Learning Approaches for Network Analysis provides an accessible framework for structurally analyzing graphs by bringing together known and novel approaches on graph classes and graph measures for classification. By providing different approaches based on experimental data, the book uniquely sets itself apart from the current literature by exploring the application of machine learning techniques to various types of complex networks. Comprised of chapters written by internationally renowned researchers in the field of interdisciplinary network theory, the book presents current and classical methods to analyze networks statistically. Methods from machine learning, data mining, and information theory are strongly emphasized throughout. Real data sets are used to showcase the discussed methods and topics, which include: A survey of computational approaches to reconstruct and partition biological networks An introduction to complex networks—measures, statistical properties, and models Modeling for evolving biological networks The structure of an evolving random bipartite graph Density-based enumeration in structured data Hyponym extraction employing a weighted graph kernel Statistical and Machine Learning Approaches for Network Analysis is an excellent supplemental text for graduate-level, cross-disciplinary courses in applied discrete mathematics, bioinformatics, pattern recognition, and computer science. The book is also a valuable reference for researchers and practitioners in the fields of applied discrete mathematics, machine learning, data mining, and biostatistics.
This book highlights the theory and practical applications of the chemical master equation (CME) approach for very large biochemical networks, which provides a powerful general framework for model building in a variety of biological networks. The aim of the book is to not only highlight advanced numerical solution methods for the CME, but also reveal their potential by means of practical examples. The case studies presented are mainly from biology; however, the applications from novel methods are discussed comprehensively, underlining the interdisciplinary approach in simulation and the potential of the chemical master equation approach for modelling bionetworks. The book is a valuable guide for researchers, graduate students, and professionals alike.
A guide to machine learning approaches and their application to the analysis of biological data. An unprecedented wealth of data is being generated by genome sequencing projects and other experimental efforts to determine the structure and function of biological molecules. The demands and opportunities for interpreting these data are expanding rapidly. Bioinformatics is the development and application of computer methods for management, analysis, interpretation, and prediction, as well as for the design of experiments. Machine learning approaches (e.g., neural networks, hidden Markov models, and belief networks) are ideally suited for areas where there is a lot of data but little theory, which is the situation in molecular biology. The goal in machine learning is to extract useful information from a body of data by building good probabilistic models—and to automate the process as much as possible. In this book Pierre Baldi and Søren Brunak present the key machine learning approaches and apply them to the computational problems encountered in the analysis of biological data. The book is aimed both at biologists and biochemists who need to understand new data-driven algorithms and at those with a primary background in physics, mathematics, statistics, or computer science who need to know more about applications in molecular biology. This new second edition contains expanded coverage of probabilistic graphical models and of the applications of neural networks, as well as a new chapter on microarrays and gene expression. The entire text has been extensively revised.