Download Free Mathematical Models And Methods For Planet Earth Book in PDF and EPUB Free Download. You can read online Mathematical Models And Methods For Planet Earth and write the review.

In 2013 several scientific activities have been devoted to mathematical researches for the study of planet Earth. The current volume presents a selection of the highly topical issues presented at the workshop “Mathematical Models and Methods for Planet Earth”, held in Roma (Italy), in May 2013. The fields of interest span from impacts of dangerous asteroids to the safeguard from space debris, from climatic changes to monitoring geological events, from the study of tumor growth to sociological problems. In all these fields the mathematical studies play a relevant role as a tool for the analysis of specific topics and as an ingredient of multidisciplinary problems. To investigate these problems we will see many different mathematical tools at work: just to mention some, stochastic processes, PDE, normal forms, chaos theory.
An accessible introduction to the mathematical methods essential for understanding processes in the Earth and environmental sciences.
This text provides essential modeling skills and methodology for the study of infectious diseases through a one-semester modeling course or directed individual studies. The book includes mathematical descriptions of epidemiological concepts, and uses classic epidemic models to introduce different mathematical methods in model analysis. Matlab codes are also included for numerical implementations. It is primarily written for upper undergraduate and beginning graduate students in mathematical sciences who have an interest in mathematical modeling of infectious diseases. Although written in a rigorous mathematical manner, the style is not unfriendly to non-mathematicians.
Our planet faces many challenges. In 2013, an international partnership of more than 140 scientific societies, research institutes, and organizations focused its attention on these challenges. This project was called Mathematics of Planet Earth and featured English- and French-language blogs, accessible to nonmathematicians, as part of its outreach activities. This book is based on more than 100 of the 270 English-language blog posts and focuses on four major themes: A Planet to Discover; A Planet Supporting Life; A Planet Organized by Humans; A Planet at Risk.--[Source inconnue].
Mathematical models have become a crucial way for the Earth scientist to understand and predict how our planet functions and evolves through time and space. The finite element method (FEM) is a remarkably flexible and powerful tool with enormous potential in the Earth Sciences. This pragmatic guide explores how a variety of different Earth science problems can be translated and solved with FEM, assuming only basic programming experience. This book begins with a general introduction to numerical modeling and includes multiple sample Matlab codes to illustrate how FEM is implemented in practice. Textboxes have been included to provide additional detail, such as specialized Matlab usage or advanced topics. Covering all the key aspects, this is essential reading for those looking to master the technique, as well as those simply seeking to increase their basic level of understanding and appreciation of FEM.
It is widely recognized that the degree of development of a science is given by the transition from a mainly descriptive stage to a more quantitative stage. In this transition, qualitative interpretations (conceptual models) are complemented with quantification (numerical models, both, deterministic and stochastic). This has been the main task of mathematical geoscientists during the last forty years - to establish new frontiers and new challenges in the study and understanding of the natural world. Mathematics of Planet Earth comprises the proceedings of the International Association for Mathematical Geosciences Conference (IAMG2013), held in Madrid from September 2-6, 2013. The Conference addresses researchers, professionals and students. The proceedings contain more than 150 original contributions and give a multidisciplinary vision of mathematical geosciences.
Mathematics of Planet Earth (MPE) was started and continues to be consolidated as a collaboration of mathematical science organisations around the world. These organisations work together to tackle global environmental, social and economic problems using mathematics.This textbook introduces the fundamental topics of MPE to advanced undergraduate and graduate students in mathematics, physics and engineering while explaining their modern usages and operational connections. In particular, it discusses the links between partial differential equations, data assimilation, dynamical systems, mathematical modelling and numerical simulations and applies them to insightful examples.The text also complements advanced courses in geophysical fluid dynamics (GFD) for meteorology, atmospheric science and oceanography. It links the fundamental scientific topics of GFD with their potential usage in applications of climate change and weather variability. The immediacy of examples provides an excellent introduction for experienced researchers interested in learning the scope and primary concepts of MPE.
Mathematics and Climate is a timely textbook aimed at students and researchers in mathematics and statistics who are interested in current issues of climate science, as well as at climate scientists who wish to become familiar with qualitative and quantitative methods of mathematics and statistics. The authors emphasize conceptual models that capture important aspects of Earth's climate system and present the mathematical and statistical techniques that can be applied to their analysis. Topics from climate science include the Earth?s energy balance, temperature distribution, ocean circulation patterns such as El Ni?o?Southern Oscillation, ice caps and glaciation periods, the carbon cycle, and the biological pump. Among the mathematical and statistical techniques presented in the text are dynamical systems and bifurcation theory, Fourier analysis, conservation laws, regression analysis, and extreme value theory. The following features make Mathematics and Climate a valuable teaching resource: issues of current interest in climate science and sustainability are used to introduce the student to the methods of mathematics and statistics; the mathematical sophistication increases as the book progresses and topics can thus be selected according to interest and level of knowledge; each chapter ends with a set of exercises that reinforce or enhance the material presented in the chapter and stimulate critical thinking and communication skills; and the book contains an extensive list of references to the literature, a glossary of terms for the nontechnical reader, and a detailed index.
Mathematical Models in Biology is an introductory book for readers interested in biological applications of mathematics and modeling in biology. A favorite in the mathematical biology community, it shows how relatively simple mathematics can be applied to a variety of models to draw interesting conclusions. Connections are made between diverse biological examples linked by common mathematical themes. A variety of discrete and continuous ordinary and partial differential equation models are explored. Although great advances have taken place in many of the topics covered, the simple lessons contained in this book are still important and informative. Audience: the book does not assume too much background knowledge--essentially some calculus and high-school algebra. It was originally written with third- and fourth-year undergraduate mathematical-biology majors in mind; however, it was picked up by beginning graduate students as well as researchers in math (and some in biology) who wanted to learn about this field.
Presents a thorough grounding in the techniques of mathematical modelling, and proceeds to explore a range of classical and continuum models from an array of disciplines.