Download Free Mathematical Modelling In Economics Book in PDF and EPUB Free Download. You can read online Mathematical Modelling In Economics and write the review.

The problems of interrelation between human economics and natural environment include scientific, technical, economic, demographic, social, political and other aspects that are studied by scientists of many specialities. One of the important aspects in scientific study of environmental and ecological problems is the development of mathematical and computer tools for rational management of economics and environment. This book introduces a wide range of mathematical models in economics, ecology and environmental sciences to a general mathematical audience with no in-depth experience in this specific area. Areas covered are: controlled economic growth and technological development, world dynamics, environmental impact, resource extraction, air and water pollution propagation, ecological population dynamics and exploitation. A variety of known models are considered, from classical ones (Cobb Douglass production function, Leontief input-output analysis, Solow models of economic dynamics, Verhulst-Pearl and Lotka-Volterra models of population dynamics, and others) to the models of world dynamics and the models of water contamination propagation used after Chemobyl nuclear catastrophe. Special attention is given to modelling of hierarchical regional economic-ecological interaction and technological change in the context of environmental impact. Xlll XIV Construction of Mathematical Models ...
Mathematical Modeling in Economics and Finance is designed as a textbook for an upper-division course on modeling in the economic sciences. The emphasis throughout is on the modeling process including post-modeling analysis and criticism. It is a textbook on modeling that happens to focus on financial instruments for the management of economic risk. The book combines a study of mathematical modeling with exposure to the tools of probability theory, difference and differential equations, numerical simulation, data analysis, and mathematical analysis. Students taking a course from Mathematical Modeling in Economics and Finance will come to understand some basic stochastic processes and the solutions to stochastic differential equations. They will understand how to use those tools to model the management of financial risk. They will gain a deep appreciation for the modeling process and learn methods of testing and evaluation driven by data. The reader of this book will be successfully positioned for an entry-level position in the financial services industry or for beginning graduate study in finance, economics, or actuarial science. The exposition in Mathematical Modeling in Economics and Finance is crystal clear and very student-friendly. The many exercises are extremely well designed. Steven Dunbar is Professor Emeritus of Mathematics at the University of Nebraska and he has won both university-wide and MAA prizes for extraordinary teaching. Dunbar served as Director of the MAA's American Mathematics Competitions from 2004 until 2015. His ability to communicate mathematics is on full display in this approachable, innovative text.
A textbook for a first-year PhD course in mathematics for economists and a reference for graduate students in economics.
The construction of mathematical models is an essential scientific activity. Mathematics is associated with developments in science and engineering, but more recently mathematical modelling has been used to investigate complex systems that arise in other fields. This book demonstrates the application of mathematics to research topics in ecology and environmental science, health and medicine, phylogenetics and neural networks, theoretical chemistry, economics and management.
Mathematics has become indispensable in the modelling of economics, finance, business and management. Without expecting any particular background of the reader, this book covers the following mathematical topics, with frequent reference to applications in economics and finance: functions, graphs and equations, recurrences (difference equations), differentiation, exponentials and logarithms, optimisation, partial differentiation, optimisation in several variables, vectors and matrices, linear equations, Lagrange multipliers, integration, first-order and second-order differential equations. The stress is on the relation of maths to economics, and this is illustrated with copious examples and exercises to foster depth of understanding. Each chapter has three parts: the main text, a section of further worked examples and a summary of the chapter together with a selection of problems for the reader to attempt. For students of economics, mathematics, or both, this book provides an introduction to mathematical methods in economics and finance that will be welcomed for its clarity and breadth.
Using examples from finance and modern warfare to the flocking of birds and the swarming of bacteria, the collected research in this volume demonstrates the common methodological approaches and tools for modeling and simulating collective behavior. The topics presented point toward new and challenging frontiers of applied mathematics, making the volume a useful reference text for applied mathematicians, physicists, biologists, and economists involved in the modeling of socio-economic systems.
This textbook provides a one-semester introduction to mathematical economics for first year graduate and senior undergraduate students. Intended to fill the gap between typical liberal arts curriculum and the rigorous mathematical modeling of graduate study in economics, this text provides a concise introduction to the mathematics needed for core microeconomics, macroeconomics, and econometrics courses. Chapters 1 through 5 builds students’ skills in formal proof, axiomatic treatment of linear algebra, and elementary vector differentiation. Chapters 6 and 7 present the basic tools needed for microeconomic analysis. Chapter 8 provides a quick introduction to (or review of) probability theory. Chapter 9 introduces dynamic modeling, applicable in advanced macroeconomics courses. The materials assume prerequisites in undergraduate calculus and linear algebra. Each chapter includes in-text exercises and a solutions manual, making this text ideal for self-study.
This book provides a comprehensive introduction to the mathematical foundations of economics, from basic set theory to fixed point theorems and constrained optimization. Rather than simply offer a collection of problem-solving techniques, the book emphasizes the unifying mathematical principles that underlie economics. Features include an extended presentation of separation theorems and their applications, an account of constraint qualification in constrained optimization, and an introduction to monotone comparative statics. These topics are developed by way of more than 800 exercises. The book is designed to be used as a graduate text, a resource for self-study, and a reference for the professional economist.
This book is devoted to the mathematical analysis of models of economic dynamics and equilibria. These models form an important part of mathemati cal economics. Models of economic dynamics describe the motion of an economy through time. The basic concept in the study of these models is that of a trajectory, i.e., a sequence of elements of the phase space that describe admissible (possible) development of the economy. From all trajectories, we select those that are" desirable," i.e., optimal in terms of a certain criterion. The apparatus of point-set maps is the appropriate tool for the analysis of these models. The topological aspects of these maps (particularly, the Kakutani fixed-point theorem) are used to study equilibrium models as well as n-person games. To study dynamic models we use a special class of maps which, in this book, are called superlinear maps. The theory of superlinear point-set maps is, obviously, of interest in its own right. This theory is described in the first chapter. Chapters 2-4 are devoted to models of economic dynamics and present a detailed study of the properties of optimal trajectories. These properties are described in terms of theorems on characteristics (on the existence of dual prices) and turnpike theorems (theorems on asymptotic trajectories). In Chapter 5, we state and study a model of economic equilibrium. The basic idea is to establish a theorem about the existence of an equilibrium state for the Arrow-Debreu model and a certain generalization of it.