Download Free Mathematical Modelling And Scientific Computation Book in PDF and EPUB Free Download. You can read online Mathematical Modelling And Scientific Computation and write the review.

This book contains original research papers presented at the International Conference on Mathematical Modelling and Scientific Computing, held at the Indian Institute of Technology Indore, India, on 19–21 July 2018. Organized into 30 chapters, the book presents the recent progress and the most advanced innovations, trends, and real-world challenges encountered and solutions embraced in the applications of mathematics and scientific computing. The book will be of interests to a wide variety of researchers, students and the practicing engineers working in diverse areas of science and engineering, ranging from applied and computational mathematics, vibration problem, computer science, and numerical optimization to physics, chemistry, biology, electrical, civil, mechanical, chemical, seismology, aerospace, and medical sciences. The aim of the conference is to bring together leading academicians, scientists, researchers, engineers, and industry partners from all over the globe to exchange and share their experiences and research results on various aspects of applied mathematics and scientific computation, like, differential equation, modeling, simulation, dynamical systems, numerical analysis, matrix theory, inverse problems, and solid and fluid mechanics, computational engineering.
Many interesting behaviors of real physical, biological, economical, and chemical systems can be described by ordinary differential equations (ODEs). Scientific Computing with Mathematica for Ordinary Differential Equations provides a general framework useful for the applications, on the conceptual aspects of the theory of ODEs, as well as a sophisticated use of Mathematica software for the solutions of problems related to ODEs. In particular, a chapter is devoted to the use ODEs and Mathematica in the Dynamics of rigid bodies. Mathematical methods and scientific computation are dealt with jointly to supply a unified presentation. The main problems of ordinary differential equations such as, phase portrait, approximate solutions, periodic orbits, stability, bifurcation, and boundary problems are covered in an integrated fashion with numerous worked examples and computer program demonstrations using Mathematica. Topics and Features:*Explains how to use the Mathematica package ODE.m to support qualitative and quantitative problem solving *End-of- chapter exercise sets incorporating the use of Mathematica programs *Detailed description and explanation of the mathematical procedures underlying the programs written in Mathematica *Appendix describing the use of ten notebooks to guide the reader through all the exercises. This book is an essential text/reference for students, graduates and practitioners in applied mathematics and engineering interested in ODE's problems in both the qualitative and quantitative description of solutions with the Mathematica program. It is also suitable as a self-
Combining scientific computing methods and algorithms with modern data analysis techniques, including basic applications of compressive sensing and machine learning, this book develops techniques that allow for the integration of the dynamics of complex systems and big data. MATLAB is used throughout for mathematical solution strategies.
Interesting real-world mathematical modelling problems are complex and can usually be studied at different scales. The scale at which the investigation is carried out is one of the factors that determines the type of mathematics most appropriate to describe the problem. The book concentrates on two modelling paradigms: the macroscopic, in which phenomena are described in terms of time evolution via ordinary differential equations; and the microscopic, which requires knowledge of random events and probability. The exposition is based on this unorthodox combination of deterministic and probabilistic methodologies, and emphasizes the development of computational skills to construct predictive models. To elucidate the concepts, a wealth of examples, self-study problems, and portions of MATLAB code used by the authors are included. This book, which has been extensively tested by the authors for classroom use, is intended for students in mathematics and the physical sciences at the advanced undergraduate level and above.
This book is a practical guide to the numerical solution of linear and nonlinear equations, differential equations, optimization problems, and eigenvalue problems. It treats standard problems and introduces important variants such as sparse systems, differential-algebraic equations, constrained optimization, Monte Carlo simulations, and parametric studies. Stability and error analysis are emphasized, and the Matlab algorithms are grounded in sound principles of software design and understanding of machine arithmetic and memory management. Nineteen case studies provide experience in mathematical modeling and algorithm design, motivated by problems in physics, engineering, epidemiology, chemistry, and biology. The topics included go well beyond the standard first-course syllabus, introducing important problems such as differential-algebraic equations and conic optimization problems, and important solution techniques such as continuation methods. The case studies cover a wide variety of fascinating applications, from modeling the spread of an epidemic to determining truss configurations.
This book constitutes the refereed post-proceedings of the International Conference on Mathematical Modeling and Computational Physics, MMCP 2011, held in Stará Lesná, Slovakia, in July 2011. The 41 revised papers presented were carefully reviewed and selected from numerous submissions. They are organized in topical sections on mathematical modeling and methods, numerical modeling and methods, computational support of the experiments, computing tools, and optimization and simulation.
A revised textbook for introductory courses in numerical methods, MATLAB and technical computing, which emphasises the use of mathematical software.
This text, based on the author's teaching at École Polytechnique, introduces the reader to the world of mathematical modelling and numerical simulation. Covering the finite difference method; variational formulation of elliptic problems; Sobolev spaces; elliptical problems; the finite element method; Eigenvalue problems; evolution problems; optimality conditions and algorithms and methods of operational research, and including a several exercises throughout, this is an ideal text for advanced undergraduate students and graduates in applied mathematics, engineering, computer science, and the physical sciences.
This book discusses the interplay of stochastics (applied probability theory) and numerical analysis in the field of quantitative finance. The stochastic models, numerical valuation techniques, computational aspects, financial products, and risk management applications presented will enable readers to progress in the challenging field of computational finance.When the behavior of financial market participants changes, the corresponding stochastic mathematical models describing the prices may also change. Financial regulation may play a role in such changes too. The book thus presents several models for stock prices, interest rates as well as foreign-exchange rates, with increasing complexity across the chapters. As is said in the industry, 'do not fall in love with your favorite model.' The book covers equity models before moving to short-rate and other interest rate models. We cast these models for interest rate into the Heath-Jarrow-Morton framework, show relations between the different models, and explain a few interest rate products and their pricing.The chapters are accompanied by exercises. Students can access solutions to selected exercises, while complete solutions are made available to instructors. The MATLAB and Python computer codes used for most tables and figures in the book are made available for both print and e-book users. This book will be useful for people working in the financial industry, for those aiming to work there one day, and for anyone interested in quantitative finance. The topics that are discussed are relevant for MSc and PhD students, academic researchers, and for quants in the financial industry.
This book covers an interdisciplinary approach for understanding mathematical modeling by offering a collection of models, solved problems related to the models, the methodologies employed, and the results using projects and case studies with insight into the operation of substantial real-time systems. The book covers a broad scope in the areas of statistical science, probability, stochastic processes, fluid dynamics, supply chain, optimization, and applications. It discusses advanced topics and the latest research findings, uses an interdisciplinary approach for real-time systems, offers a platform for integrated research, and identifies the gaps in the field for further research. The book is for researchers, students, and teachers that share a goal of learning advanced topics and the latest research in mathematical modeling.