Download Free Mathematical Modeling In Science And Engineering Book in PDF and EPUB Free Download. You can read online Mathematical Modeling In Science And Engineering and write the review.

A powerful, unified approach to mathematical and computational modeling in science and engineering Mathematical and computational modeling makes it possible to predict the behavior of a broad range of systems across a broad range of disciplines. This text guides students and professionals through the axiomatic approach, a powerful method that will enable them to easily master the principle types of mathematical and computational models used in engineering and science. Readers will discover that this axiomatic approach not only enables them to systematically construct effective models, it also enables them to apply these models to any macroscopic physical system. Mathematical Modeling in Science and Engineering focuses on models in which the processes to be modeled are expressed as systems of partial differential equations. It begins with an introductory discussion of the axiomatic formulation of basic models, setting the foundation for further topics such as: Mechanics of classical and non-classical continuous systems Solute transport by a free fluid Flow of a fluid in a porous medium Multiphase systems Enhanced oil recovery Fluid mechanics Throughout the text, diagrams are provided to help readers visualize and better understand complex mathematical concepts. A set of exercises at the end of each chapter enables readers to put their new modeling skills into practice. There is also a bibliography in each chapter to facilitate further investigation of individual topics. Mathematical Modeling in Science and Engineering is ideal for both students and professionals across the many disciplines of science and engineering that depend on mathematical and computational modeling to predict and understand complex systems.
This concise and clear introduction to the topic requires only basic knowledge of calculus and linear algebra - all other concepts and ideas are developed in the course of the book. Lucidly written so as to appeal to undergraduates and practitioners alike, it enables readers to set up simple mathematical models on their own and to interpret their results and those of others critically. To achieve this, many examples have been chosen from various fields, such as biology, ecology, economics, medicine, agricultural, chemical, electrical, mechanical and process engineering, which are subsequently discussed in detail. Based on the author`s modeling and simulation experience in science and engineering and as a consultant, the book answers such basic questions as: What is a mathematical model? What types of models do exist? Which model is appropriate for a particular problem? What are simulation, parameter estimation, and validation? The book relies exclusively upon open-source software which is available to everybody free of charge. The entire book software - including 3D CFD and structural mechanics simulation software - can be used based on a free CAELinux-Live-DVD that is available in the Internet (works on most machines and operating systems).
Employing a practical, "learn by doing" approach, this first-rate text fosters the development of the skills beyond the pure mathematics needed to set up and manipulate mathematical models. The author draws on a diversity of fields — including science, engineering, and operations research — to provide over 100 reality-based examples. Students learn from the examples by applying mathematical methods to formulate, analyze, and criticize models. Extensive documentation, consisting of over 150 references, supplements the models, encouraging further research on models of particular interest. The lively and accessible text requires only minimal scientific background. Designed for senior college or beginning graduate-level students, it assumes only elementary calculus and basic probability theory for the first part, and ordinary differential equations and continuous probability for the second section. All problems require students to study and create models, encouraging their active participation rather than a mechanical approach. Beyond the classroom, this volume will prove interesting and rewarding to anyone concerned with the development of mathematical models or the application of modeling to problem solving in a wide array of applications.
Thoroughly revised and updated, The Art of Modeling in Science and Engineering with Mathematica, Second Edition explores the mathematical tools and procedures used in modeling based on the laws of conservation of mass, energy, momentum, and electrical charge. The authors have culled and consolidated the best from the first edition and
Part of the International Series in Mathematics Mathematical Modeling for the Scientific Method is intended for the sophomore/junior-level student seeking to be well-grounded in mathematical modeling for their studies in biology, the physical sciences, engineering, and/or medicine. It clarifies the connection between deductive and inductive reasoning as used in Mathematics and Science and urges students to think critically about concepts and applications. The authors’ goal is to be introductory in level while covering a broad range of techniques. They unite topics in statistics, linear algebra, calculus and differential equations, while discussing how these subjects are interrelated and utilized. Mathematical Modeling for the Scientific Method leaves students with a clearer perspective of the role of mathematics within the sciences and the understanding of how to rationally work through even rigorous applications with ease.
Using examples from finance and modern warfare to the flocking of birds and the swarming of bacteria, the collected research in this volume demonstrates the common methodological approaches and tools for modeling and simulating collective behavior. The topics presented point toward new and challenging frontiers of applied mathematics, making the volume a useful reference text for applied mathematicians, physicists, biologists, and economists involved in the modeling of socio-economic systems.
Science and engineering students depend heavily on concepts of mathematical modeling. In an age where almost everything is done on a computer, author Clive Dym believes that students need to understand and "own" the underlying mathematics that computers are doing on their behalf. His goal for Principles of Mathematical Modeling, Second Edition, is to engage the student reader in developing a foundational understanding of the subject that will serve them well into their careers. The first half of the book begins with a clearly defined set of modeling principles, and then introduces a set of foundational tools including dimensional analysis, scaling techniques, and approximation and validation techniques. The second half demonstrates the latest applications for these tools to a broad variety of subjects, including exponential growth and decay in fields ranging from biology to economics, traffic flow, free and forced vibration of mechanical and other systems, and optimization problems in biology, structures, and social decision making. Prospective students should have already completed courses in elementary algebra, trigonometry, and first-year calculus and have some familiarity with differential equations and basic physics. - Serves as an introductory text on the development and application of mathematical models - Focuses on techniques of particular interest to engineers, scientists, and others who model continuous systems - Offers more than 360 problems, providing ample opportunities for practice - Covers a wide range of interdisciplinary topics--from engineering to economics to the sciences - Uses straightforward language and explanations that make modeling easy to understand and apply New to this Edition: - A more systematic approach to mathematical modeling, outlining ten specific principles - Expanded and reorganized chapters that flow in an increasing level of complexity - Several new problems and updated applications - Expanded figure captions that provide more information - Improved accessibility and flexibility for teaching
Mathematical Modelling in Science and Technology: The Fourth International Conference covers the proceedings of the Fourth International Conference by the same title, held at the Swiss Federal Institute of Technology, Zurich, Switzerland on August 15-17, 1983. Mathematical modeling is a powerful tool to solve many complex problems presented by scientific and technological developments. This book is organized into 20 parts encompassing 180 chapters. The first parts present the basic principles, methodology, systems theory, parameter estimation, system identification, and optimization of mathematical modeling. The succeeding parts discuss the features of stochastic and numerical modeling and simulation languages. Considerable parts deal with the application areas of mathematical modeling, such as in chemical engineering, solid and fluid mechanics, water resources, medicine, economics, transportation, and industry. The last parts tackle the application of mathematical modeling in student management and other academic cases. This book will prove useful to researchers in various science and technology fields.
Appropriate for upper level undergraduate and graduate courses in Mathematical Modeling offered in math, engineering departments, and applied math departments. Prerequisite is some exposure to differential equations and to matrices. This accessible and practical text is designed to nurture a "modeling intuition" for a wide range of disciplines, including mathematics, science, engineering, and economics. The numerous examples and mathematical techniques it includes demonstrate that mathematical modeling can be an important tool for revealing the underlying links between apparently disparate phenomena. Its flexible approach also reinforces the idea that there is no fixed set of tools for modeling.
Fundamental concepts of mathematical modeling Modeling is one of the most effective, commonly used tools in engineering and the applied sciences. In this book, the authors deal with mathematical programming models both linear and nonlinear and across a wide range of practical applications. Whereas other books concentrate on standard methods of analysis, the authors focus on the power of modeling methods for solving practical problems-clearly showing the connection between physical and mathematical realities-while also describing and exploring the main concepts and tools at work. This highly computational coverage includes: * Discussion and implementation of the GAMS programming system * Unique coverage of compatibility * Illustrative examples that showcase the connection between model and reality * Practical problems covering a wide range of scientific disciplines, as well as hundreds of examples and end-of-chapter exercises * Real-world applications to probability and statistics, electrical engineering, transportation systems, and more Building and Solving Mathematical Programming Models in Engineering and Science is practically suited for use as a professional reference for mathematicians, engineers, and applied or industrial scientists, while also tutorial and illustrative enough for advanced students in mathematics or engineering.