Download Free Mathematical Methods Of Electromagnetic Theory Book in PDF and EPUB Free Download. You can read online Mathematical Methods Of Electromagnetic Theory and write the review.

This text provides a mathematically precise but intuitive introduction to classical electromagnetic theory and wave propagation, with a brief introduction to special relativity. While written in a distinctive, modern style, Friedrichs manages to convey the physical intuition and 19th century basis of the equations, with an emphasis on conservation laws. Particularly striking features of the book include: (a) a mathematically rigorous derivation of the interaction of electromagnetic waves with matter, (b) a straightforward explanation of how to use variational principles to solve problems in electro- and magnetostatics, and (c) a thorough discussion of the central importance of the conservation of charge. It is suitable for advanced undergraduate students in mathematics and physics with a background in advanced calculus and linear algebra, as well as mechanics and electromagnetics at an undergraduate level. Apart from minor corrections to the text, the notation was updated in this edition to follow the conventions of modern vector calculus. Titles in this series are co-published with the Courant Institute of Mathematical Sciences at New York University.
This book provides the reader with basic tools to solve problems of electromagnetism in their natural functional frameworks thanks to modern mathematical methods: integral surface methods, and also semigroups, variational methods, etc., well adapted to a numerical approach.As examples of applications of these tools and concepts, we solve several fundamental problems of electromagnetism, stationary or time-dependent: scattering of an incident wave by an obstacle, bounded or not, by gratings; wave propagation in a waveguide, with junctions and cascades. We hope that mathematical notions will allow a better understanding of modelization in electromagnetism and emphasize the essential features related to the geometry and nature of materials.
This book covers recent achievements in the area of advanced analytical and associated numerical methods as applied to various problems arising in all branches of electromagnetics. The unifying theme is the application of advanced or novel mathematical techniques to produce analytical solutions or effective analytical-numerical methods for computational electromagnetics addressing more general problems. Each chapter contains an outline of its topic, discusses its scientific context and importance, describes approaches to date, gives an exposition of the author's approach to the problem tackled in the chapter, describes the results, and concludes with a discussion of the range or class of problems where the techniques described work most appropriately and effectively. Intended primarily for researchers in the fields of electrical engineering, mathematics, physics and related disciplines, the book offers systematic and thorough coverage of this complex topic. It is hoped that the book will help to stimulate further investigation and discussion of the important problems in electromagnetics within this research community.
This book explores the connection between algebraic structures in topology and computational methods for 3-dimensional electric and magnetic field computation. The connection between topology and electromagnetism has been known since the 19th century, but there has been little exposition of its relevance to computational methods in modern topological language. This book is an effort to close that gap. It will be of interest to people working in finite element methods for electromagnetic computation and those who have an interest in numerical and industrial applications of algebraic topology.
Co-published with Oxford University Press. This highly technical and thought-provoking book stresses the development of mathematical foundations for the application of the electromagnetic model to problems of research and technology. Features include in-depth coverage of linear spaces, Green's functions, spectral expansions, electromagnetic source representations, and electromagnetic boundary value problems. This book will be of interest graduate-level students in engineering, electromagnetics, physics, and applied mathematics as well as to research engineers, physicists, and scientists.
This book covers recent achievements in the area of advanced analytical and associated numerical methods as applied to various problems arising in all branches of electromagnetics. The unifying theme is the application of advanced or novel mathematical techniques to produce analytical solutions or effective analytical-numerical methods for computational electromagnetics addressing more general problems.
This book aims to disseminate geometric algebra as a straightforward mathematical tool set for working with and understanding classical electromagnetic theory. It's target readership is anyone who has some knowledge of electromagnetic theory, predominantly ordinary scientists and engineers who use it in the course of their work, or postgraduate students and senior undergraduates who are seeking to broaden their knowledge and increase their understanding of the subject. It is assumed that the reader is not a mathematical specialist and is neither familiar with geometric algebra or its application to electromagnetic theory. The modern approach, geometric algebra, is the mathematical tool set we should all have started out with and once the reader has a grasp of the subject, he or she cannot fail to realize that traditional vector analysis is really awkward and even misleading by comparison. Professors can request a solutions manual by email: [email protected]
Discussed is the electromagnetic field theory and its mathematical methods. Maxwell’s equations are presented and explained. It follows a detailed discussion of electrostatics, flux, magnetostatics, quasi stationary fields and electromagnetic fields. The author presents how to apply numerical methods like finite differences, finite elements, boundary elements, image charge methods, and Monte-Carlo methods to field theory problems. He offers an outlook on fundamental issues in physics including quantum mechanics. Some of these issues are still unanswered questions. A chapter dedicated to the theory of special relativity, which allows to simplify a number of field theory problems, complements this book. A book whose usefulness is not limited to engineering students, but can be very helpful for physicists and other branches of science.
Reviews the fundamental concepts behind the theory and computation of electromagnetic fields The book is divided in two parts. The first part covers both fundamental theories (such as vector analysis, Maxwell’s equations, boundary condition, and transmission line theory) and advanced topics (such as wave transformation, addition theorems, and fields in layered media) in order to benefit students at all levels. The second part of the book covers the major computational methods for numerical analysis of electromagnetic fields for engineering applications. These methods include the three fundamental approaches for numerical analysis of electromagnetic fields: the finite difference method (the finite difference time-domain method in particular), the finite element method, and the integral equation-based moment method. The second part also examines fast algorithms for solving integral equations and hybrid techniques that combine different numerical methods to seek more efficient solutions of complicated electromagnetic problems. Theory and Computation of Electromagnetic Fields, Second Edition: Provides the foundation necessary for graduate students to learn and understand more advanced topics Discusses electromagnetic analysis in rectangular, cylindrical and spherical coordinates Covers computational electromagnetics in both frequency and time domains Includes new and updated homework problems and examples Theory and Computation of Electromagnetic Fields, Second Edition is written for advanced undergraduate and graduate level electrical engineering students. This book can also be used as a reference for professional engineers interested in learning about analysis and computation skills.