Download Free Mathematical Foundations Of Supersymmetry Book in PDF and EPUB Free Download. You can read online Mathematical Foundations Of Supersymmetry and write the review.

Supersymmetry is a highly active area of considerable interest among physicists and mathematicians. It is not only fascinating in its own right, but there is also indication that it plays a fundamental role in the physics of elementary particles and gravitation. The purpose of the book is to lay down the foundations of the subject, providing the reader with a comprehensive introduction to the language and techniques, as well as detailed proofs and many clarifying examples. This book is aimed ideally at second-year graduate students. After the first three introductory chapters, the text is divided into two parts: the theory of smooth supermanifolds and Lie supergroups, including the Frobenius theorem, and the theory of algebraic superschemes and supergroups. There are three appendices. The first introduces Lie superalgebras and representations of classical Lie superalgebras, the second collects some relevant facts on categories, sheafification of functors and commutative algebra, and the third explains the notion of Frechet space in the super context.
An special feature of the book is the treatment in depth of the theory of spinors in all dimensions and signatures, which is the basis of all developments of supergeometry both in physics and mathematics, especially in quantum field theory and supergravity."--Jacket.
A brief introductory description of the new physical and mathematical ideas involved in formulating supersymmetric theories. The basic ideas are worked out in low space dimensionalities and techniques where the formulae do not obscure the concepts.
The purpose of this handbook is to give an overview of some recent developments in differential geometry related to supersymmetric field theories. The main themes covered are: Special geometry and supersymmetry Generalized geometry Geometries with torsion Para-geometries Holonomy theory Symmetric spaces and spaces of constant curvature Conformal geometry Wave equations on Lorentzian manifolds D-branes and K-theory The intended audience consists of advanced students and researchers working in differential geometry, string theory, and related areas. The emphasis is on geometrical structures occurring on target spaces of supersymmetric field theories. Some of these structures can be fully described in the classical framework of pseudo-Riemannian geometry. Others lead to new concepts relating various fields of research, such as special Kahler geometry or generalized geometry.
Supersymmetry is a highly active area of considerable interest among physicists and mathematicians. It is not only fascinating in its own right, but there is also indication that it plays a fundamental role in the physics of elementary particles and gravitation. The purpose of the book is to lay down the foundations of the subject, providing the reader with a comprehensive introduction to the language and techniques, with a special attention to giving detailed proofs and many clarifying examples. It is aimed ideally at a second year graduate student. After the first three introductory chapters, the text divides into two parts: the theory of smooth supermanifolds and Lie supergroups, including the Frobenius theorem, and the theory of algebraic superschemes and supergroups. There are three appendices, the first introducing Lie superalgebras and representations of classical Lie superalgebras, the second collecting some relevant facts on categories, sheafification of functors and commutative algebra, and the third explaining the notion of Fréchet space in the super context.
Presents a comprehensive treatment of quantum mechanics from a mathematics perspective. Including traditional topics, like classical mechanics, mathematical foundations of quantum mechanics, quantization, and the Schrodinger equation, this book gives a mathematical treatment of systems of identical particles with spin.
Quantum field theory has had a profound influence on mathematics, and on geometry in particular. However, the notorious difficulties of renormalization have made quantum field theory very inaccessible for mathematicians. This provides complete mathematical foundations for the theory of perturbative quantum field theory, based on Wilson's ideas of low-energy effective field theory and on the Batalin-Vilkovisky formalism.
The past decade has witnessed dramatic developments in the field of theoretical physics. This book is a comprehensive introduction to these recent developments. It contains a review of the Standard Model, covering non-perturbative topics, and a discussion of grand unified theories and magnetic monopoles. It introduces the basics of supersymmetry and its phenomenology, and includes dynamics, dynamical supersymmetry breaking, and electric-magnetic duality. The book then covers general relativity and the big bang theory, and the basic issues in inflationary cosmologies before discussing the spectra of known string theories and the features of their interactions. The book also includes brief introductions to technicolor, large extra dimensions, and the Randall-Sundrum theory of warped spaces. This will be of great interest to graduates and researchers in the fields of particle theory, string theory, astrophysics and cosmology. The book contains several problems, and password protected solutions will be available to lecturers at www.cambridge.org/9780521858410.
Supersymmetry or SUSY, one of the most beautiful recent ideas of physics, predicts sparticles existing as superpartners of particles. This book gives a theoretical and phenomenological account of sparticles. Starting from a basic level, it provides a comprehensive, pedagogical and user-friendly treatment of the subject of four-dimensional N=1 supersymmetry as well as its observational aspects in high energy physics and cosmology. Part One of the book introduces the requisite formal theory, preceded by a discussion of the naturalness problem. Part Two describes the supersymmetrization of the Standard Model of particle interactions as well as the origin of soft supersymmetry breaking and how it can be mediated from higher energies. Search strategies for sparticles, supersymmetric Higgs bosons, nonminimal scenarios and cosmological implications are some of the other topics covered. Novel features of the book include a dictionary between two-component and four-component spinor notation, a step-by-step derivation of the nonrenormalization theorem, an extended discussion of supersymmetric renormalization group evolution, detailed analyses of minimal and nonminimal models with gravity (including anomaly) mediated and gauge mediated supersymmetry breaking as well as elaborate self-contained presentations of collider signals of sparticles plus supersymmetric Higgs bosons and of supersymmetric cosmology. Appendices list all Feynman rules for the vertices of the Minimal Supersymmetric Standard Model.
A run-away bestseller from the moment it hit the market in late 1999. This impressive, thick softcover offers mathematicians and mathematical physicists the opportunity to learn about the beautiful and difficult subjects of quantum field theory and string theory. Cover features an intriguing cartoon that will bring a smile to its intended audience.