Download Free Mathematical Control Theory For Stochastic Partial Differential Equations Book in PDF and EPUB Free Download. You can read online Mathematical Control Theory For Stochastic Partial Differential Equations and write the review.

This is the first book to systematically present control theory for stochastic distributed parameter systems, a comparatively new branch of mathematical control theory. The new phenomena and difficulties arising in the study of controllability and optimal control problems for this type of system are explained in detail. Interestingly enough, one has to develop new mathematical tools to solve some problems in this field, such as the global Carleman estimate for stochastic partial differential equations and the stochastic transposition method for backward stochastic evolution equations. In a certain sense, the stochastic distributed parameter control system is the most general control system in the context of classical physics. Accordingly, studying this field may also yield valuable insights into quantum control systems. A basic grasp of functional analysis, partial differential equations, and control theory for deterministic systems is the only prerequisite for reading this book.
Focusing on research surrounding aspects of insufficiently studied problems of estimation and optimal control of random fields, this book exposes some important aspects of those fields for systems modeled by stochastic partial differential equations. It contains many results of interest to specialists in both the theory of random fields and optimal control theory who use modern mathematical tools for resolving specific applied problems, and presents research that has not previously been covered. More generally, this book is intended for scientists, graduate, and post-graduates specializing in probability theory and mathematical statistics. The models presented describe many processes in turbulence theory, fluid mechanics, hydrology, astronomy, and meteorology, and are widely used in pattern recognition theory and parameter identification of stochastic systems. Therefore, this book may also be useful to applied mathematicians who use probability and statistical methods in the selection of useful signals subject to noise, hypothesis distinguishing, distributed parameter systems optimal control, and more. Material presented in this monograph can be used for education courses on the estimation and control theory of random fields.
This book presents cutting-edge contributions in the areas of control theory and partial differential equations. Over the decades, control theory has had deep and fruitful interactions with the theory of partial differential equations (PDEs). Well-known examples are the study of the generalized solutions of Hamilton-Jacobi-Bellman equations arising in deterministic and stochastic optimal control and the development of modern analytical tools to study the controllability of infinite dimensional systems governed by PDEs. In the present volume, leading experts provide an up-to-date overview of the connections between these two vast fields of mathematics. Topics addressed include regularity of the value function associated to finite dimensional control systems, controllability and observability for PDEs, and asymptotic analysis of multiagent systems. The book will be of interest for both researchers and graduate students working in these areas.
This IMA Volume in Mathematics and its Applications STOCHASTIC DIFFERENTIAL SYSTEMS, STOCHASTIC CONTROL THEORY AND APPLICATIONS is the proceedings of a workshop which was an integral part of the 1986-87 IMA program on STOCHASTIC DIFFERENTIAL EQUATIONS AND THEIR APPLICATIONS. We are grateful to the Scientific Committee: Daniel Stroock (Chairman) WendeIl Flerning Theodore Harris Pierre-Louis Lions Steven Orey George Papanicolaou for planning and implementing an exciting and stimulating year-long program. We es pecially thank WendeIl Fleming and Pierre-Louis Lions for organizing an interesting and productive workshop in an area in which mathematics is beginning to make significant contributions to real-world problems. George R. Seil Hans Weinberger PREFACE This volume is the Proceedings of a Workshop on Stochastic Differential Systems, Stochastic Control Theory, and Applications held at IMA June 9-19,1986. The Workshop Program Commit tee consisted of W.H. Fleming and P.-L. Lions (co-chairmen), J. Baras, B. Hajek, J.M. Harrison, and H. Sussmann. The Workshop emphasized topics in the following four areas. (1) Mathematical theory of stochastic differential systems, stochastic control and nonlinear filtering for Markov diffusion processes. Connections with partial differential equations. (2) Applications of stochastic differential system theory, in engineering and management sci ence. Adaptive control of Markov processes. Advanced computational methods in stochas tic control and nonlinear filtering. (3) Stochastic scheduling, queueing networks, and related topics. Flow control, multiarm bandit problems, applications to problems of computer networks and scheduling of complex manufacturing operations.
This textbook presents, in a mathematically precise manner, a unified introduction to deterministic control theory. With the exception of a few more advanced concepts required for the final part of the book, the presentation requires only a knowledge of basic facts from linear algebra, differential equations, and calculus. In addition to classical concepts and ideas, the author covers the stabilization of nonlinear systems using topological methods, realization theory for nonlinear systems, impulsive control and positive systems, the control of rigid bodies, the stabilization of infinite dimensional systems, and the solution of minimum energy problems. This second edition includes new chapters that introduce a variety of topics, such as controllability with vanishing energy, boundary control systems, and delayed systems. With additional proofs, theorems, results, and a substantially larger index, this new edition will be an invaluable resource for students and researchers of control theory. Mathematical Control Theory: An Introduction will be ideal for a beginning graduate course in mathematical control theory, or for self-study by professionals needing a complete picture of the mathematical theory that underlies the applications of control theory. From reviews of the first edition: At last! We did need an introductory textbook on control which can be read, understood, and enjoyed by anyone. Gian-Carlo Rota, The Bulletin of Mathematics Books It covers a remarkable number of topics...The exposition is excellent, and the book is a joy to read. A novel one-semester course covering both linear and nonlinear systems could be given...The book is an excellent one for introducing a mathematician to control theory. Bulletin of the AMS Indeed, for mathematicians who look for the basic ideas or a general picture about the main branches of control theory, I believe this book can provide an excellent bridge to this area. IEEE Control Systems Magazine
In a mathematically precise manner, this book presents a unified introduction to deterministic control theory. It includes material on the realization of both linear and nonlinear systems, impulsive control, and positive linear systems.
Based on the proceedings of the International Conference on Stochastic Partial Differential Equations and Applications-V held in Trento, Italy, this illuminating reference presents applications in filtering theory, stochastic quantization, quantum probability, and mathematical finance and identifies paths for future research in the field. Stochastic Partial Differential Equations and Applications analyzes recent developments in the study of quantum random fields, control theory, white noise, and fluid dynamics. It presents precise conditions for nontrivial and well-defined scattering, new Gaussian noise terms, models depicting the asymptotic behavior of evolution equations, and solutions to filtering dilemmas in signal processing. With contributions from more than 40 leading experts in the field, Stochastic Partial Differential Equations and Applications is an excellent resource for pure and applied mathematicians; numerical analysts; mathematical physicists; geometers; economists; probabilists; computer scientists; control, electrical, and electronics engineers; and upper-level undergraduate and graduate students in these disciplines.
Control Theory of Systems Governed by Partial Differential Equations covers the proceedings of the 1976 Conference by the same title, held at the Naval Surface Weapons Center, Silver Spring, Maryland. The purpose of this conference is to examine the control theory of partial differential equations and its application. This text is divided into five chapters that primarily focus on tutorial lecture series on the theory of optimal control of distributed systems. It describes the many manifestations of the theory and its applications appearing in the other chapters. This work also presents the principles of the duality and asymptotic methods in control theory, including the variational principle for the heat equation. A chapter highlights systems that are not of the linear quadratic type. This chapter also explores the control of free surfaces and the geometrical control variables. The last chapter provides a summary of the features and applications of the numerical approximation of problems of optimal control. This book will prove useful to mathematicians, engineers, and researchers.