Download Free Mathematical Basics Of Motion And Deformation In Computer Graphics Second Edition Book in PDF and EPUB Free Download. You can read online Mathematical Basics Of Motion And Deformation In Computer Graphics Second Edition and write the review.

This synthesis lecture presents an intuitive introduction to the mathematics of motion and deformation in computer graphics. Starting with familiar concepts in graphics, such as Euler angles, quaternions, and affine transformations, we illustrate that a mathematical theory behind these concepts enables us to develop the techniques for efficient/effective creation of computer animation. This book, therefore, serves as a good guidepost to mathematics (differential geometry and Lie theory) for students of geometric modeling and animation in computer graphics. Experienced developers and researchers will also benefit from this book, since it gives a comprehensive overview of mathematical approaches that are particularly useful in character modeling, deformation, and animation.
This synthesis lecture presents an intuitive introduction to the mathematics of motion and deformation in computer graphics. Starting with familiar concepts in graphics, such as Euler angles, quaternions, and affine transformations, we illustrate that a mathematical theory behind these concepts enables us to develop the techniques for efficient/effective creation of computer animation. This book, therefore, serves as a good guidepost to mathematics (differential geometry and Lie theory) for students of geometric modeling and animation in computer graphics. Experienced developers and researchers will also benefit from this book, since it gives a comprehensive overview of mathematical approaches that are particularly useful in character modeling, deformation, and animation.
This synthesis lecture presents an intuitive introduction to the mathematics of motion and deformation in computer graphics. Starting with familiar concepts in graphics, such as Euler angles, quaternions, and affine transformations, we illustrate that a mathematical theory behind these concepts enables us to develop the techniques for efficient/effective creation of computer animation. This book, therefore, serves as a good guidepost to mathematics (differential geometry and Lie theory) for students of geometric modeling and animation in computer graphics. Experienced developers and researchers will also benefit from this book, since it gives a comprehensive overview of mathematical approaches that are particularly useful in character modeling, deformation, and animation.
Physics-based animation is commonplace in animated feature films and even special effects for live-action movies. Think about a recent movie and there will be some sort of special effects such as explosions or virtual worlds. Cloth simulation is no different and is ubiquitous because most virtual characters (hopefully!) wear some sort of clothing. The focus of this book is physics-based cloth simulation. We start by providing background information and discuss a range of applications. This book provides explanations of multiple cloth simulation techniques. More specifically, we start with the most simple explicitly integrated mass-spring model and gradually work our way up to more complex and commonly used implicitly integrated continuum techniques in state-of-the-art implementations. We give an intuitive explanation of the techniques and give additional information on how to efficiently implement them on a computer. This book discusses explicit and implicit integration schemes for cloth simulation modeled with mass-spring systems. In addition to this simple model, we explain the more advanced continuum-inspired cloth model introduced in the seminal work of Baraff and Witkin [1998]. This method is commonly used in industry. We also explain recent work by Liu et al. [2013] that provides a technique to obtain fast simulations. In addition to these simulation approaches, we discuss how cloth simulations can be art directed for stylized animations based on the work of Wojan et al. [2016]. Controllability is an essential component of a feature animation film production pipeline. We conclude by pointing the reader to more advanced techniques.
This synthesis lecture presents an intuitive introduction to the mathematics of motion and deformation in computer graphics. Starting with familiar concepts in graphics, such as Euler angles, quaternions, and affine transformations, we illustrate that a mathematical theory behind these concepts enables us to develop the techniques for efficient/effective creation of computer animation. This book, therefore, serves as a good guidepost to mathematics (differential geometry and Lie theory) for students of geometric modeling and animation in computer graphics. Experienced developers and researchers will also benefit from this book, since it gives a comprehensive overview of mathematical approaches that are particularly useful in character modeling, deformation, and animation. Table of Contents: Preface / Symbols and Notations / Introduction / Rigid Transformation / Affine Transformation / Exponential and Logarithm of Matrices / 2D Affine Transformation between Two Triangles / Global 2D Shape Interpolation / Parametrizing 3D Positive Affine Transformations / Further Readings / Bibliography / Authors' Biographies
This synthesis lecture presents an intuitive introduction to the mathematics of motion and deformation in computer graphics. Starting with familiar concepts in graphics, such as Euler angles, quaternions, and affine transformations, we illustrate that a mathematical theory behind these concepts enables us to develop the techniques for efficient/effective creation of computer animation. This book, therefore, serves as a good guidepost to mathematics (differential geometry and Lie theory) for students of geometric modeling and animation in computer graphics. Experienced developers and researchers will also benefit from this book, since it gives a comprehensive overview of mathematical approaches that are particularly useful in character modeling, deformation, and animation.
The wide diffusion of 3D printing technologies continuously calls for effective solutions for designing and fabricating objects of increasing complexity. The so called "computational fabrication" pipeline comprises all the steps necessary to turn a design idea into a physical object, and this book describes the most recent advancements in the two fundamental phases along this pipeline: design and process planning. We examine recent systems in the computer graphics community that allow us to take a design idea from conception to a digital model, and classify algorithms that are necessary to turn such a digital model into an appropriate sequence of machining instructions.
This book provides beginners in computer graphics and related fields a guide to the concepts, models, and technologies for realistic rendering of material appearance. It provides a complete and thorough overview of reflectance models and acquisition setups, along with providing a selection of the available tools to explore, visualize, and render the reflectance data. Reflectance models are under continuous development, since there is still no straightforward solution for general material representations. Every reflectance model is specific to a class of materials. Hence, each has strengths and weaknesses, which the book highlights in order to help the reader choose the most suitable model for any purpose. The overview of the acquisition setups will provide guidance to a reader who needs to acquire virtual materials and will help them to understand which measurement setup can be useful for a particular purpose, while taking into account the performance and the expected cost derived from the required components. The book also describes several recent open source software solutions, useful for visualizing and manipulating a wide variety of reflectance models and data.
In image processing and computer vision applications such as medical or scientific image data analysis, as well as in industrial scenarios, images are used as input measurement data. It is good scientific practice that proper measurements must be equipped with error and uncertainty estimates. For many applications, not only the measured values but also their errors and uncertainties, should be—and more and more frequently are—taken into account for further processing. This error and uncertainty propagation must be done for every processing step such that the final result comes with a reliable precision estimate. The goal of this book is to introduce the reader to the recent advances from the field of uncertainty quantification and error propagation for computer vision, image processing, and image analysis that are based on partial differential equations (PDEs). It presents a concept with which error propagation and sensitivity analysis can be formulated with a set of basic operations. The approach discussed in this book has the potential for application in all areas of quantitative computer vision, image processing, and image analysis. In particular, it might help medical imaging finally become a scientific discipline that is characterized by the classical paradigms of observation, measurement, and error awareness. This book is comprised of eight chapters. After an introduction to the goals of the book (Chapter 1), we present a brief review of PDEs and their numerical treatment (Chapter 2), PDE-based image processing (Chapter 3), and the numerics of stochastic PDEs (Chapter 4). We then proceed to define the concept of stochastic images (Chapter 5), describe how to accomplish image processing and computer vision with stochastic images (Chapter 6), and demonstrate the use of these principles for accomplishing sensitivity analysis (Chapter 7). Chapter 8 concludes the book and highlights new research topics for the future.
In geometry processing and shape analysis, several applications have been addressed through the properties of the Laplacian spectral kernels and distances, such as commute time, biharmonic, diffusion, and wave distances. Within this context, this book is intended to provide a common background on the definition and computation of the Laplacian spectral kernels and distances for geometry processing and shape analysis. To this end, we define a unified representation of the isotropic and anisotropic discrete Laplacian operator on surfaces and volumes; then, we introduce the associated differential equations, i.e., the harmonic equation, the Laplacian eigenproblem, and the heat equation. Filtering the Laplacian spectrum, we introduce the Laplacian spectral distances, which generalize the commute-time, biharmonic, diffusion, and wave distances, and their discretization in terms of the Laplacian spectrum. As main applications, we discuss the design of smooth functions and the Laplacian smoothing of noisy scalar functions. All the reviewed numerical schemes are discussed and compared in terms of robustness, approximation accuracy, and computational cost, thus supporting the reader in the selection of the most appropriate with respect to shape representation, computational resources, and target application.