Download Free Mathematical Aspects Of Geometric Modeling Book in PDF and EPUB Free Download. You can read online Mathematical Aspects Of Geometric Modeling and write the review.

Examines concepts that are useful for the modeling of curves and surfaces and emphasizes the mathematical theory that underlies them.
This monograph examines in detail certain concepts that are useful for the modeling of curves and surfaces and emphasizes the mathematical theory that underlies these ideas. The two principal themes of the text are the use of piecewise polynomial representation (this theme appears in one form or another in every chapter), and iterative refinement, also called subdivision. Here, simple iterative geometric algorithms produce, in the limit, curves with complex analytic structure. In the first three chapters, the de Casteljau subdivision for Bernstein-Bezier curves is used to introduce matrix subdivision, and the Lane-Riesenfield algorithm for computing cardinal splines is tied into stationary subdivision. This ultimately leads to the construction of prewavelets of compact support. The remainder of the book deals with concepts of "visual smoothness" of curves, along with the intriguing idea of generating smooth multivariate piecewise polynomials as volumes of "slices" of polyhedra. The final chapter contains an evaluation of polynomials by finite recursive algorithms. Each chapter contains introductory material as well as more advanced results.
"The book outlines methods used to construct curves, surfaces, and solids. It describes composition, principles of manipulation, and applications of geometric models. It has been written for university students and specialists in computer-aided design."--Abstract, p. 3.
"Curves and Surfaces in Geometric Modeling: Theory and Algorithms offers a theoretically unifying understanding of polynomial curves and surfaces as well as an effective approach to implementation that you can apply to your own work as a graduate student, scientist, or practitioner." "The focus here is on blossoming - the process of converting a polynomial to its polar form - as a natural, purely geometric explanation of the behavior of curves and surfaces. This insight is important for more than just its theoretical elegance - the author demonstrates the value of blossoming as a practical algorithmic tool for generating and manipulating curves and surfaces that meet many different criteria. You'll learn to use this and other related techniques drawn from affine geometry for computing and adjusting control points, deriving the continuity conditions for splines, creating subdivision surfaces, and more." "It will be an essential acquisition for readers in many different areas, including computer graphics and animation, robotics, virtual reality, geometric modeling and design, medical imaging, computer vision, and motion planning."--BOOK JACKET.Title Summary field provided by Blackwell North America, Inc. All Rights Reserved
This book spans the distance between algebraic descriptions of geometric objects and the rendering of digital geometric shapes based on algebraic models. These contrasting points of view inspire a thorough analysis of the key challenges and how they are met. The articles focus on important classes of problems: implicitization, classification, and intersection. Combining illustrative graphics, computations and review articles this book helps the reader gain a firm practical grasp of these subjects.
Computer Aided Geometric Design covers the proceedings of the First International Conference on Computer Aided Geometric Design, held at the University of Utah on March 18-21, 1974. This book is composed of 15 chapters and starts with reviews of the properties of surface patch equation and the use of computers in geometrical design. The next chapters deal with the principles of smooth interpolation over triangles and without twist constraints, as well as the graphical representation of surfaces over triangles and rectangles. These topics are followed by discussions of the B-spline curves and surfaces; mathematical and practical possibilities of UNISURF; nonlinear splines; and some piecewise polynomial alternatives to splines under tension. Other chapters explore the smooth parametric surfaces, the space curve as a folded edge, and the interactive computer graphics application of the parametric bi-cubic surface to engineering design problems. The final chapters look into the three-dimensional human-machine communication and a class of local interpolating splines. This book will prove useful to design engineers.
This edited volume addresses the importance of mathematics for industry and society by presenting highlights from contract research at the Department of Applied Mathematics at SINTEF, the largest independent research organization in Scandinavia. Examples range from computer-aided geometric design, via general purpose computing on graphics cards, to reservoir simulation for enhanced oil recovery. Contributions are written in a tutorial style.
Taking a novel, more appealing approach than current texts, An Integrated Introduction to Computer Graphics and Geometric Modeling focuses on graphics, modeling, and mathematical methods, including ray tracing, polygon shading, radiosity, fractals, freeform curves and surfaces, vector methods, and transformation techniques. The author begins with f
Possibly the most comprehensive overview of computer graphics as seen in the context of geometric modeling, this two-volume work covers implementation and theory in a thorough and systematic fashion. It covers the computer graphics part of the field of geometric modeling and includes all the standard computer graphics topics. The CD-ROM features two companion programs.
This book covers topics of Informational Geometry, a field which deals with the differential geometric study of the manifold probability density functions. This is a field that is increasingly attracting the interest of researchers from many different areas of science, including mathematics, statistics, geometry, computer science, signal processing, physics and neuroscience. It is the authors’ hope that the present book will be a valuable reference for researchers and graduate students in one of the aforementioned fields. This textbook is a unified presentation of differential geometry and probability theory, and constitutes a text for a course directed at graduate or advanced undergraduate students interested in applications of differential geometry in probability and statistics. The book contains over 100 proposed exercises meant to help students deepen their understanding, and it is accompanied by software that is able to provide numerical computations of several information geometric objects. The reader will understand a flourishing field of mathematics in which very few books have been written so far.