Download Free Mathematical Approaches To Problems In Resource Management And Epidemiology Book in PDF and EPUB Free Download. You can read online Mathematical Approaches To Problems In Resource Management And Epidemiology and write the review.

Increasingly, mathematical methods are being used to advantage in addressing the problems facing humanity in managing its environment. Problems in resource management and epidemiology especially have demonstrated the utility of quantitative modeling. To explore these approaches, the Center of Applied Mathematics at Cornell University organized a conference in Fall, 1987, with the objective of surveying and assessing the state of the art. This volume records the proceedings of that conference. Underlying virtually all of these studies are models of population growth, from individual cells to large vertebrates. Cell population growth presents the simplest of systems for study, and is of fundamental importance in its own right for a variety of medical and environmental applications. In Part I of this volume, Michael Shuler describes computer models of individual cells and cell populations, and Frank Hoppensteadt discusses the synchronization of bacterial culture growth. Together, these provide a valuable introduction to mathematical cell biology.
This IMA Volume in Mathematics and its Applications MATHEMATICAL APPROACHES FOR EMERGING AND REEMERGING INFECTIOUS DISEASES: MODELS, AND THEORY METHODS is based on the proceedings of a successful one week workshop. The pro ceedings of the two-day tutorial which preceded the workshop "Introduction to Epidemiology and Immunology" appears as IMA Volume 125: Math ematical Approaches for Emerging and Reemerging Infectious Diseases: An Introduction. The tutorial and the workshop are integral parts of the September 1998 to June 1999 IMA program on "MATHEMATICS IN BI OLOGY. " I would like to thank Carlos Castillo-Chavez (Director of the Math ematical and Theoretical Biology Institute and a member of the Depart ments of Biometrics, Statistics and Theoretical and Applied Mechanics, Cornell University), Sally M. Blower (Biomathematics, UCLA School of Medicine), Pauline van den Driessche (Mathematics and Statistics, Uni versity of Victoria), and Denise Kirschner (Microbiology and Immunology, University of Michigan Medical School) for their superb roles as organizers of the meetings and editors of the proceedings. Carlos Castillo-Chavez, es pecially, made a major contribution by spearheading the editing process. I am also grateful to Kenneth L. Cooke (Mathematics, Pomona College), for being one of the workshop organizers and to Abdul-Aziz Yakubu (Mathe matics, Howard University) for serving as co-editor of the proceedings. I thank Simon A. Levin (Ecology and Evolutionary Biology, Princeton Uni versity) for providing an introduction.
The 18 research articles of this volume discuss the major themes that have emerged from mathematical and statistical research in the epidemiology of HIV. The opening paper reviews important recent contributions. Five sections follow: Statistical Methodology and Forecasting, Infectivity and the HIV, Heterogeneity and HIV Transmission Dynamics, Social Dynamics and AIDS, and The Immune System and The HIV. In each, leading experts in AIDS epidemiology present the recent results. Some address the role of variable infectivity, heterogeneous mixing, and long periods of infectiousness in the dynamics of HIV; others concentrate on parameter estimation and short-term forecasting. The last section looks at the interaction between the HIV and the immune system.
The dynamics of infectious diseases represents one of the oldest and ri- est areas of mathematical biology. From the classical work of Hamer (1906) and Ross (1911) to the spate of more modern developments associated with Anderson and May, Dietz, Hethcote, Castillo-Chavez and others, the subject has grown dramatically both in volume and in importance. Given the pace of development, the subject has become more and more di?use, and the need to provide a framework for organizing the diversity of mathematical approaches has become clear. Enzo Capasso, who has been a major contributor to the mathematical theory, has done that in the present volume, providing a system for organizing and analyzing a wide range of models, depending on the str- ture of the interaction matrix. The ?rst class, the quasi-monotone or positive feedback systems, can be analyzed e?ectively through the use of comparison theorems, that is the theory of order-preserving dynamical systems; the s- ond, the skew-symmetrizable systems, rely on Lyapunov methods. Capasso develops the general mathematical theory, and considers a broad range of - amples that can be treated within one or the other framework. In so doing, he has provided the ?rst steps towards the uni?cation of the subject, and made an invaluable contribution to the Lecture Notes in Biomathematics. Simon A. Levin Princeton, January 1993 Author’s Preface to Second Printing In the Preface to the First Printing of this volume I wrote: \ . .
"Math and bio 2010 grew out of 'Meeting the Challenges: Education across the Biological, Mathematical and Computer Sciences,' a joint project of the Mathematical Association of America (MAA), the National Science Foundation Division of Undergraduate Education (NSF DUE), the National Institute of General Medical Sciences (NIGMS), the American Association for the Advancement of Science (AAAS), and the American Society for Microbiology (ASM)."--Foreword, p. vi
A self-contained and comprehensive guide to the mathematical modeling of disease transmission, appropriate for graduate students.
Why do organisms become extremely abundant one year and then seem to disappear a few years later? Why do population outbreaks in particular species happen more or less regularly in certain locations, but only irregularly (or never at all) in other locations? Complex population dynamics have fascinated biologists for decades. By bringing together mathematical models, statistical analyses, and field experiments, this book offers a comprehensive new synthesis of the theory of population oscillations. Peter Turchin first reviews the conceptual tools that ecologists use to investigate population oscillations, introducing population modeling and the statistical analysis of time series data. He then provides an in-depth discussion of several case studies--including the larch budmoth, southern pine beetle, red grouse, voles and lemmings, snowshoe hare, and ungulates--to develop a new analysis of the mechanisms that drive population oscillations in nature. Through such work, the author argues, ecologists can develop general laws of population dynamics that will help turn ecology into a truly quantitative and predictive science. Complex Population Dynamics integrates theoretical and empirical studies into a major new synthesis of current knowledge about population dynamics. It is also a pioneering work that sets the course for ecology's future as a predictive science.
Surveys the state of epidemic modelling, resulting from the NATO Advanced Workshop at the Newton Institute in 1993.
First multi-year cumulation covers six years: 1965-70.