Download Free Mathematical Approaches For Emerging And Reemerging Infectious Diseases An Introduction Book in PDF and EPUB Free Download. You can read online Mathematical Approaches For Emerging And Reemerging Infectious Diseases An Introduction and write the review.

This book grew out of the discussions and presentations that began during the Workshop on Emerging and Reemerging Diseases (May 17-21, 1999) sponsored by the Institute for Mathematics and its Application (IMA) at the University of Minnesota with the support of NIH and NSF. The workshop started with a two-day tutorial session directed at ecologists, epidemiologists, immunologists, mathematicians, and scientists interested in the study of disease dynamics. The core of this first volume, Volume 125, covers tutorial and research contributions on the use of dynamical systems (deterministic discrete, delay, PDEs, and ODEs models) and stochastic models in disease dynamics. The volume includes the study of cancer, HIV, pertussis, and tuberculosis. Beginning graduate students in applied mathematics, scientists in the natural, social, or health sciences or mathematicians who want to enter the fields of mathematical and theoretical epidemiology will find this book useful.
The book is a comprehensive, self-contained introduction to the mathematical modeling and analysis of infectious diseases. It includes model building, fitting to data, local and global analysis techniques. Various types of deterministic dynamical models are considered: ordinary differential equation models, delay-differential equation models, difference equation models, age-structured PDE models and diffusion models. It includes various techniques for the computation of the basic reproduction number as well as approaches to the epidemiological interpretation of the reproduction number. MATLAB code is included to facilitate the data fitting and the simulation with age-structured models.
This IMA Volume in Mathematics and its Applications MATHEMATICAL APPROACHES FOR EMERGING AND REEMERGING INFECTIOUS DISEASES: MODELS, AND THEORY METHODS is based on the proceedings of a successful one week workshop. The pro ceedings of the two-day tutorial which preceded the workshop "Introduction to Epidemiology and Immunology" appears as IMA Volume 125: Math ematical Approaches for Emerging and Reemerging Infectious Diseases: An Introduction. The tutorial and the workshop are integral parts of the September 1998 to June 1999 IMA program on "MATHEMATICS IN BI OLOGY. " I would like to thank Carlos Castillo-Chavez (Director of the Math ematical and Theoretical Biology Institute and a member of the Depart ments of Biometrics, Statistics and Theoretical and Applied Mechanics, Cornell University), Sally M. Blower (Biomathematics, UCLA School of Medicine), Pauline van den Driessche (Mathematics and Statistics, Uni versity of Victoria), and Denise Kirschner (Microbiology and Immunology, University of Michigan Medical School) for their superb roles as organizers of the meetings and editors of the proceedings. Carlos Castillo-Chavez, es pecially, made a major contribution by spearheading the editing process. I am also grateful to Kenneth L. Cooke (Mathematics, Pomona College), for being one of the workshop organizers and to Abdul-Aziz Yakubu (Mathe matics, Howard University) for serving as co-editor of the proceedings. I thank Simon A. Levin (Ecology and Evolutionary Biology, Princeton Uni versity) for providing an introduction.
Based on lecture notes of two summer schools with a mixed audience from mathematical sciences, epidemiology and public health, this volume offers a comprehensive introduction to basic ideas and techniques in modeling infectious diseases, for the comparison of strategies to plan for an anticipated epidemic or pandemic, and to deal with a disease outbreak in real time. It covers detailed case studies for diseases including pandemic influenza, West Nile virus, and childhood diseases. Models for other diseases including Severe Acute Respiratory Syndrome, fox rabies, and sexually transmitted infections are included as applications. Its chapters are coherent and complementary independent units. In order to accustom students to look at the current literature and to experience different perspectives, no attempt has been made to achieve united writing style or unified notation. Notes on some mathematical background (calculus, matrix algebra, differential equations, and probability) have been prepared and may be downloaded at the web site of the Centre for Disease Modeling (www.cdm.yorku.ca).
This text provides essential modeling skills and methodology for the study of infectious diseases through a one-semester modeling course or directed individual studies. The book includes mathematical descriptions of epidemiological concepts, and uses classic epidemic models to introduce different mathematical methods in model analysis. Matlab codes are also included for numerical implementations. It is primarily written for upper undergraduate and beginning graduate students in mathematical sciences who have an interest in mathematical modeling of infectious diseases. Although written in a rigorous mathematical manner, the style is not unfriendly to non-mathematicians.
Hardly a day goes by without news headlines concerning infectious disease threats. Currently the spectre of a pandemic of influenza A|H1N1 is raising its head, and heated debates are taking place about the pro’s and con’s of vaccinating young girls against human papilloma virus. For an evidence-based and responsible communication of infectious disease topics to avoid misunderstandings and overreaction of the public, we need solid scientific knowledge and an understanding of all aspects of infectious diseases and their control. The aim of our book is to present the reader with the general picture and the main ideas of the subject. The book introduces the reader to methodological aspects of epidemiology that are specific for infectious diseases and provides insight into the epidemiology of some classes of infectious diseases characterized by their main modes of transmission. This choice of topics bridges the gap between scientific research on the clinical, biological, mathematical, social and economic aspects of infectious diseases and their applications in public health. The book will help the reader to understand the impact of infectious diseases on modern society and the instruments that policy makers have at their disposal to deal with these challenges. It is written for students of the health sciences, both of curative medicine and public health, and for experts that are active in these and related domains, and it may be of interest for the educated layman since the technical level is kept relatively low.
In the past half century, deadly disease outbreaks caused by novel viruses of animal origin - Nipah virus in Malaysia, Hendra virus in Australia, Hantavirus in the United States, Ebola virus in Africa, along with HIV (human immunodeficiency virus), several influenza subtypes, and the SARS (sudden acute respiratory syndrome) and MERS (Middle East respiratory syndrome) coronaviruses - have underscored the urgency of understanding factors influencing viral disease emergence and spread. Emerging Viral Diseases is the summary of a public workshop hosted in March 2014 to examine factors driving the appearance, establishment, and spread of emerging, re-emerging and novel viral diseases; the global health and economic impacts of recently emerging and novel viral diseases in humans; and the scientific and policy approaches to improving domestic and international capacity to detect and respond to global outbreaks of infectious disease. This report is a record of the presentations and discussion of the event.
Mathematical and Statistical Estimation Approaches in Epidemiology compiles t- oretical and practical contributions of experts in the analysis of infectious disease epidemics in a single volume. Recent collections have focused in the analyses and simulation of deterministic and stochastic models whose aim is to identify and rank epidemiological and social mechanisms responsible for disease transmission. The contributions in this volume focus on the connections between models and disease data with emphasis on the application of mathematical and statistical approaches that quantify model and data uncertainty. The book is aimed at public health experts, applied mathematicians and sci- tists in the life and social sciences, particularly graduate or advanced undergraduate students, who are interested not only in building and connecting models to data but also in applying and developing methods that quantify uncertainty in the context of infectious diseases. Chowell and Brauer open this volume with an overview of the classical disease transmission models of Kermack-McKendrick including extensions that account for increased levels of epidemiological heterogeneity. Their theoretical tour is followed by the introduction of a simple methodology for the estimation of, the basic reproduction number,R . The use of this methodology 0 is illustrated, using regional data for 1918–1919 and 1968 in uenza pandemics.
Infectious diseases are the leading cause of death globally, particularly among children and young adults. The spread of new pathogens and the threat of antimicrobial resistance pose particular challenges in combating these diseases. Major Infectious Diseases identifies feasible, cost-effective packages of interventions and strategies across delivery platforms to prevent and treat HIV/AIDS, other sexually transmitted infections, tuberculosis, malaria, adult febrile illness, viral hepatitis, and neglected tropical diseases. The volume emphasizes the need to effectively address emerging antimicrobial resistance, strengthen health systems, and increase access to care. The attainable goals are to reduce incidence, develop innovative approaches, and optimize existing tools in resource-constrained settings.
Discover how the application of novel multidisciplinary, integrative approaches and technologies are dramatically changing our understanding of the pathogenesis of infectious diseases and their treatments. Each article presents the state of the science, with a strong emphasis on new and emerging medical applications. The Encyclopedia of Infectious Diseases is organized into five parts. The first part examines current threats such as AIDS, malaria, SARS, and influenza. The second part addresses the evolution of pathogens and the relationship between human genetic diversity and the spread of infectious diseases. The next two parts highlight the most promising uses of molecular identification, vector control, satellite detection, surveillance, modeling, and high-throughput technologies. The final part explores specialized topics of current concern, including bioterrorism, world market and infectious diseases, and antibiotics for public health. Each article is written by one or more leading experts in the field of infectious diseases. These experts place all the latest findings from various disciplines in context, helping readers understand what is currently known, what the next generation of breakthroughs is likely to be, and where more research is needed. Several features facilitate research and deepen readers' understanding of infectious diseases: Illustrations help readers understand the pathogenesis and diagnosis of infectious diseases Lists of Web resources serve as a gateway to important research centers, government agencies, and other sources of information from around the world Information boxes highlight basic principles and specialized terminology International contributions offer perspectives on how infectious diseases are viewed by different cultures A special chapter discusses the representation of infectious diseases in art With its multidisciplinary approach, this encyclopedia helps point researchers in new promising directions and helps health professionals better understand the nature and treatment of infectious diseases.