Download Free Mathematical And Philosophical Manifesto Book in PDF and EPUB Free Download. You can read online Mathematical And Philosophical Manifesto and write the review.

This book is for only two kinds of people: those who are interested in science and math, and those who aren't. And so, motivated by this powerful idea, Calculus for Everyone presents the mathematics of change in an extremely effective way for anyone with a first-year course in algebra. Yet it does so without dumbing calculus down. In fact, Calculus for Everyone is not only for students who would have never dreamt of taking calculus, it is also for those who have already taken a standard calculus course, as well as for those who will go on to take such a course Based on more than a decade of classroom experience, this book provides mastery of calculus's core by focusing on the foundational concepts of limits, derivatives, and integrals, explaining how all three are united in the fundamental theorem of calculus. Moreover, Calculus for Everyone explains how the story of calculus is central to Western culture, from Plato in ancient Greece, to today's modern physics. Indeed, this book explains why calculus is needed at all-and why it is needed so badly. By mastering the core of calculus-as well as seeing its meaning and significance-students will not only better understand math and science in general, but contemporary culture and their place in it.
Contra those proclaiming the end of philosophy, Badiou aims to restore philosophical thought to the complete space of the truths that condition it.
Twenty years ago, Alain Badiou's first Manifesto for Philosophy rose up against the all-pervasive proclamation of the "end" of philosophy. In lieu of this problematic of the end, he put forward the watchword: "one more step". The situation has considerably changed since then. Philosophy was threatened with obliteration at the time, whereas today it finds itself under threat for the diametrically opposed reason: it is endowed with an excessive, artificial existence. "Philosophy" is everywhere. It serves as a trademark for various media pundits. It livens up cafés and health clubs. It has its magazines and its gurus. It is universally called upon, by everything from banks to major state commissions, to pronounce on ethics, law and duty. In essence, "philosophy" has now come to stand for nothing other than its most ancient enemy: conservative ethics. Badiou's second manifesto therefore seeks to demoralize philosophy and to separate it from all those "philosophies" that are as servile as they are ubiquitous. It demonstrates the power of certain eternal truths to illuminate action and, as such, to transport philosophy far beyond the figure of "the human" and its "rights". There, well beyond all moralism, in the clear expanse of the idea, life becomes something radically other than survival.
Explores the link between mathematics and ontology.
This Festschrift contains numerous colorful and eclectic essays from well-known mathematicians, philosophers, logicians, and linguists celebrating the 90th birthday of Reuben Hersh. The essays offer, in part, attempts to answer the following questions set forth by Reuben himself as a focus for this volume: Can practicing mathematicians, as such, contribute anything to the philosophy of math? Can or should philosophers of math, as such, say anything to practicing mathematicians? Twenty or fifty years from now, what will be similar, and what will, or could, or should be altogether different: About the philosophy of math? About math education? About math research institutions? About data processing and scientific computing? The essays also offer glimpses into Reuben’s fertile mind and his lasting influence on the mathematical community, as well as revealing the diverse roots, obstacles and philosophical dispositions that characterize the working lives of mathematicians. With contributions from a veritable “who’s who” list of 20th century luminaries from mathematics and philosophy, as well as from Reuben himself, this volume will appeal to a wide variety of readers from curious undergraduates to prominent mathematicians.
A renewal of immanent metaphysics through diagrammatic methods and the tools of category theorySpinoza, Peirce and Deleuze are, in different ways, philosophers of immanence. Rocco Gangle addresses the methodological questions raised by a commitment to immanence in terms of how diagrams may be used both as tools and as objects of philosophical investigation. He integrates insights from Spinozist metaphysics, Peircean semiotics and Deleuzes philosophy of difference in conjunction with the formal operations of category theory. Category theory reveals deep structural connections among logic, topology and a variety of different areas of mathematics, and it provides constructive and rigorous concepts for investigating how diagrams work. Gangle introduces the methods of category theory from a philosophical and diagrammatic perspective, allowing philosophers with little or no mathematical training to come to grips with this important field. This coordination of immanent metaphysics, diagrammatic method and category theoretical mathematics opens a new horizon for contemporary thought.
This book offers an archeology of the undeveloped potential of mathematics for critical theory. As Max Horkheimer and Theodor W. Adorno first conceived of the critical project in the 1930s, critical theory steadfastly opposed the mathematization of thought. Mathematics flattened thought into a dangerous positivism that led reason to the barbarism of World War II. The Mathematical Imagination challenges this narrative, showing how for other German-Jewish thinkers, such as Gershom Scholem, Franz Rosenzweig, and Siegfried Kracauer, mathematics offered metaphors to negotiate the crises of modernity during the Weimar Republic. Influential theories of poetry, messianism, and cultural critique, Handelman shows, borrowed from the philosophy of mathematics, infinitesimal calculus, and geometry in order to refashion cultural and aesthetic discourse. Drawn to the austerity and muteness of mathematics, these friends and forerunners of the Frankfurt School found in mathematical approaches to negativity strategies to capture the marginalized experiences and perspectives of Jews in Germany. Their vocabulary, in which theory could be both mathematical and critical, is missing from the intellectual history of critical theory, whether in the work of second generation critical theorists such as Jürgen Habermas or in contemporary critiques of technology. The Mathematical Imagination shows how Scholem, Rosenzweig, and Kracauer’s engagement with mathematics uncovers a more capacious vision of the critical project, one with tools that can help us intervene in our digital and increasingly mathematical present. The Mathematical Imagination is available from the publisher on an open-access basis.
Do numbers, sets, and so forth, exist? What do mathematical statements mean? Are they literally true or false, or do they lack truth values altogether? Addressing questions that have attracted lively debate in recent years, Stewart Shapiro contends that standard realist and antirealist accounts of mathematics are both problematic. As Benacerraf first noted, we are confronted with the following powerful dilemma. The desired continuity between mathematical and, say, scientific language suggests realism, but realism in this context suggests seemingly intractable epistemic problems. As a way out of this dilemma, Shapiro articulates a structuralist approach. On this view, the subject matter of arithmetic, for example, is not a fixed domain of numbers independent of each other, but rather is the natural number structure, the pattern common to any system of objects that has an initial object and successor relation satisfying the induction principle. Using this framework, realism in mathematics can be preserved without troublesome epistemic consequences. Shapiro concludes by showing how a structuralist approach can be applied to wider philosophical questions such as the nature of an "object" and the Quinean nature of ontological commitment. Clear, compelling, and tautly argued, Shapiro's work, noteworthy both in its attempt to develop a full-length structuralist approach to mathematics and to trace its emergence in the history of mathematics, will be of deep interest to both philosophers and mathematicians.