Download Free Mathematical And Numerical Modeling In Porous Media Book in PDF and EPUB Free Download. You can read online Mathematical And Numerical Modeling In Porous Media and write the review.

Porous media are broadly found in nature and their study is of high relevance in our present lives. In geosciences porous media research is fundamental in applications to aquifers, mineral mines, contaminant transport, soil remediation, waste storage, oil recovery and geothermal energy deposits. Despite their importance, there is as yet no complete
Porous media are broadly found in nature and their study is of high relevance in our present lives. In geosciences porous media research is fundamental in applications to aquifers, mineral mines, contaminant transport, soil remediation, waste storage, oil recovery and geothermal energy deposits. Despite their importance, there is as yet no complete understanding of the physical processes involved in fluid flow and transport. This fact can be attributed to the complexity of the phenomena which include multicomponent fluids, multiphasic flow and rock-fluid interactions. Since its formulation in 1856, Darcy’s law has been generalized to describe multi-phase compressible fluid flow through anisotropic and heterogeneous porous and fractured rocks. Due to the scarcity of information, a high degree of uncertainty on the porous medium properties is commonly present. Contributions to the knowledge of modeling flow and transport, as well as to the characterization of porous media at field scale are of great relevance. This book addresses several of these issues, treated with a variety of methodologies grouped into four parts: I Fundamental concepts II Flow and transport III Statistical and stochastic characterization IV Waves The problems analyzed in this book cover diverse length scales that range from small rock samples to field-size porous formations. They belong to the most active areas of research in porous media with applications in geosciences developed by diverse authors. This book was written for a broad audience with a prior and basic knowledge of porous media. The book is addressed to a wide readership, and it will be useful not only as an authoritative textbook for undergraduate and graduate students but also as a reference source for professionals including geoscientists, hydrogeologists, geophysicists, engineers, applied mathematicians and others working on porous media.
The book focuses on two issues related to mathematical and numerical modelling of flow in unsaturated porous media. In the first part numerical solution of the governing equations is discussed, with particular emphasis on the spatial discretization of highly nonlinear permeability coefficient. The second part deals with large scale flow in heterogeneous porous media of binary structure. Upscaled models are developed and it is shown that the presence of material heterogeneities may give rise to additional non-equilibrium terms in the governing equations or to hysteresis in the averaged constitutive relationships.
This edited volume addresses the importance of mathematics for industry and society by presenting highlights from contract research at the Department of Applied Mathematics at SINTEF, the largest independent research organization in Scandinavia. Examples range from computer-aided geometric design, via general purpose computing on graphics cards, to reservoir simulation for enhanced oil recovery. Contributions are written in a tutorial style.
This book offers a fundamental and practical introduction to the use of computational methods. A thorough discussion of practical aspects of the subject is presented in a consistent manner, and the level of treatment is rigorous without being unnecessarily abstract. Each chapter ends with bibliographic information and exercises.
This book provides a systematic treatment of the geometrical and transport properties of fractures, fracture networks, and fractured porous media. It is divided into two major parts. The first part deals with geometry of individual fractures and of fracture networks. The use of the dimensionless density rationalizes the results for the percolation threshold of the networks. It presents the crucial advantage of grouping the numerical data for various fracture shapes. The second part deals mainly with permeability under steady conditions of fractures, fracture networks, and fractured porous media. Again the results for various types of networks can be rationalized by means of the dimensionless density. A chapter is dedicated to two phase flow in fractured porous media.
The need to predict, understand, and optimize complex physical and c- mical processes occurring in and around the earth, such as groundwater c- tamination, oil reservoir production, discovering new oil reserves, and ocean hydrodynamics, has been increasingly recognized. Despite their seemingly disparate natures, these geoscience problems have many common mathe- tical and computational characteristics. The techniques used to describe and study them are applicable across a broad range of areas. The study of the above problems through physical experiments, mat- matical theory, and computational techniques requires interdisciplinary col- boration between engineers, mathematicians, computational scientists, and other researchers working in industry, government laboratories, and univ- sities. By bringing together such researchers, meaningful progress can be made in predicting, understanding, and optimizing physical and chemical processes. The International Workshop on Fluid Flow and Transport in Porous - dia was successfully held in Beijing, China, August 2{6, 1999. The aim of this workshop was to bring together applied mathematicians, computational scientists, and engineers working actively in the mathematical and nume- cal treatment of ?uid ?ow and transport in porous media. A broad range of researchers presented papers and discussed both problems and current, state-of-the-art techniques.
The June 2001 conference brought together mathematicians, computational scientists, and engineers working on the mathematical and numerical treatment of fluid flow and transport in porous media. This collection of 43 papers from that conference reports on recent advances in network flow modeling, parallel computation, optimization, upscaling, uncertainty reduction, media characterization, and chemically reactive phenomena. Topics include modeling horizontal wells using hybrid grids in reservoir simulation, a high order Lagrangian scheme for flow through unsaturated porous media, and a streamline front tracking method for two- and three- phase flow. No index. Annotation copyrighted by Book News, Inc., Portland, OR.
This book addresses the concepts of unstable flow solutions, convective instability and absolute instability, with reference to simple (or toy) mathematical models, which are mathematically simple despite their purely abstract character. Within this paradigm, the book introduces the basic mathematical tools, Fourier transform, normal modes, wavepackets and their dynamics, before reviewing the fundamental ideas behind the mathematical modelling of fluid flow and heat transfer in porous media. The author goes on to discuss the fundamentals of the Rayleigh-Bénard instability and other thermal instabilities of convective flows in porous media, and then analyses various examples of transition from convective to absolute instability in detail, with an emphasis on the formulation, deduction of the dispersion relation and study of the numerical data regarding the threshold of absolute instability. The clear descriptions of the analytical and numerical methods needed to obtain these parametric threshold data enable readers to apply them in different or more general cases. This book is of interest to postgraduates and researchers in mechanical and thermal engineering, civil engineering, geophysics, applied mathematics, fluid mechanics, and energy technology.
This proceedings volume contains contributions from leading scientists working on modelling and numerical simulation of flows through porous media and on mathematical analysis of the equations associated to the modelling. There is a number of contributions on rigorous results for stochastic media and for applications to numerical simulations. Modelling and simulation of environment and pollution are also subject of several papers. The published material herein gives an insight to the state of the art in the field with special attention for rigorous discussions and results.