Download Free Math Olympiad Book in PDF and EPUB Free Download. You can read online Math Olympiad and write the review.

Mathematical Olympiad Treasures aims at building a bridge between ordinary high school exercises and more sophisticated, intricate and abstract concepts in undergraduate mathematics. The book contains a stimulating collection of problems in the subjects of algebra, geometry, trigonometry, number theory and combinatorics. While it may be considered a sequel to "Mathematical Olympiad Challenges," the focus is on engaging a wider audience to apply techniques and strategies to real-world problems. Throughout the book students are encouraged to express their ideas, conjectures, and conclusions in writing. The goal is to help readers develop a host of new mathematical tools that will be useful beyond the classroom and in a number of disciplines.
A collection of problems put together by coaches of the U.S. International Mathematical Olympiad Team.
Math Hour Olympiads is a non-standard method of training middle- and high-school students interested in mathematics where students spend several hours thinking about a few difficult and unusual problems. When a student solves a problem, the solution is presented orally to a pair of friendly judges. Discussing the solutions with the judges creates a personal and engaging mathematical experience for the students and introduces them to the true nature of mathematical proof and problem solving. This book recounts the authors' experiences from the first ten years of running a Math Hour Olympiad at the University of Washington in Seattle. The major part of the book is devoted to problem sets and detailed solutions, complemented by a practical guide for anyone who would like to organize an oral olympiad for students in their community. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession.
This is a challenging problem-solving book in Euclidean geometry, assuming nothing of the reader other than a good deal of courage. Topics covered included cyclic quadrilaterals, power of a point, homothety, triangle centers; along the way the reader will meet such classical gems as the nine-point circle, the Simson line, the symmedian and the mixtilinear incircle, as well as the theorems of Euler, Ceva, Menelaus, and Pascal. Another part is dedicated to the use of complex numbers and barycentric coordinates, granting the reader both a traditional and computational viewpoint of the material. The final part consists of some more advanced topics, such as inversion in the plane, the cross ratio and projective transformations, and the theory of the complete quadrilateral. The exposition is friendly and relaxed, and accompanied by over 300 beautifully drawn figures. The emphasis of this book is placed squarely on the problems. Each chapter contains carefully chosen worked examples, which explain not only the solutions to the problems but also describe in close detail how one would invent the solution to begin with. The text contains a selection of 300 practice problems of varying difficulty from contests around the world, with extensive hints and selected solutions. This book is especially suitable for students preparing for national or international mathematical olympiads or for teachers looking for a text for an honor class.
Introduction to Math Olympiad Problems aims to introduce high school students to all the necessary topics that frequently emerge in international Math Olympiad competitions. In addition to introducing the topics, the book will also provide several repetitive-type guided problems to help develop vital techniques in solving problems correctly and efficiently. The techniques employed in the book will help prepare students for the topics they will typically face in an Olympiad-style event, but also for future college mathematics courses in Discrete Mathematics, Graph Theory, Differential Equations, Number Theory and Abstract Algebra. Features: Numerous problems designed to embed good practice in readers, and build underlying reasoning, analysis and problem-solving skills Suitable for advanced high school students preparing for Math Olympiad competitions
A major aspect of mathematical training and its benefit to society is the ability to use logic to solve problems. The American Mathematics Competitions have been given for more than fifty years to millions of students. This book considers the basic ideas behind the solutions to the majority of these problems, and presents examples and exercises from past exams to illustrate the concepts. Anyone preparing for the Mathematical Olympiads will find many useful ideas here, but people generally interested in logical problem solving should also find the problems and their solutions stimulating. The book can be used either for self-study or as topic-oriented material and samples of problems for practice exams. Useful reading for anyone who enjoys solving mathematical problems, and equally valuable for educators or parents who have children with mathematical interest and ability.
Over 300 challenging problems in algebra, arithmetic, elementary number theory and trigonometry, selected from Mathematical Olympiads held at Moscow University. Only high school math needed. Includes complete solutions. Features 27 black-and-white illustrations. 1962 edition.
Olympiad problems help able school students flex their mathematical muscles. Good Olympiad problems are unpredictable: this makes them worthwhile but it also makes them seem hard and even unapproachable. The Mathematical Olympiad Handbook contains some of the problems and solutions from the British Mathematical Olympiads from 1965 to 1996 in a form designed to help bright students overcome this barrier.
Mathematical Olympiad Challenges is a rich collection of problems put together by two experienced and well-known professors and coaches of the U.S. International Mathematical Olympiad Team. Hundreds of beautiful, challenging, and instructive problems from algebra, geometry, trigonometry, combinatorics, and number theory were selected from numerous mathematical competitions and journals. An important feature of the work is the comprehensive background material provided with each grouping of problems. The problems are clustered by topic into self-contained sections with solutions provided separately. All sections start with an essay discussing basic facts and one or two representative examples. A list of carefully chosen problems follows and the reader is invited to take them on. Additionally, historical insights and asides are presented to stimulate further inquiry. The emphasis throughout is on encouraging readers to move away from routine exercises and memorized algorithms toward creative solutions to open-ended problems. Aimed at motivated high school and beginning college students and instructors, this work can be used as a text for advanced problem- solving courses, for self-study, or as a resource for teachers and students training for mathematical competitions and for teacher professional development, seminars, and workshops.