Download Free Math In Motion Ebook Book in PDF and EPUB Free Download. You can read online Math In Motion Ebook and write the review.

"Kids love to move. But how do we harness all that kinetic energy effectively for math learning? In Math on the Move, Malke Rosenfeld shows how pairing math concepts and whole body movement creates opportunities for students to make sense of math in entirely new ways. Malke shares her experience creating dynamic learning environments by: exploring the use of the body as a thinking tool, highlighting mathematical ideas that are usefully explored with a moving body, providing a range of entry points for learning to facilitate a moving math classroom. ..."--Publisher description.
"This picture book traces the impressive career of Sophie Kowalevski, the first woman to receive a doctorate in mathematics requiring original research. As a girl, Sophie is fascinated by the equations her father uses to wallpaper her room. She proves herself a prodigy, and tutors are impressed enough to give her private lessons. Despite universities that refuse to allow women on campus or to pay them to teach, Sophie is able to distinguish herself with her research into partial differential equations. Sophie receives a doctorate and becomes the first female professional mathematician in Northern Europe. The book mentions several of Kowalevski's mathematical contributions and closes with an encouraging message about women in mathematics"--
All students face struggle, and they should—it is how they learn and grow. The teacher’s job is not to remove struggle, but rather to value and harness it, helping students develop good habits of productive struggle. But what’s missing for many educators is an action plan for how to achieve this, especially when it comes to math. This book guides teachers through six specific actions—including valuing, fostering, building, planning, supporting, and reflecting on struggle—to create a game plan for overcoming obstacles by sharing · Actionable steps, activities, and tools for implementation · Instructional tasks representative of each grade level · Real-world examples showcasing classroom photos and student work
Erudite and entertaining overview follows development of mathematics from ancient Greeks to present. Topics include logic and mathematics, the fundamental concept, differential calculus, probability theory, much more. Exercises and problems.
Applied Mathematics: Made Simple provides an elementary study of the three main branches of classical applied mathematics: statics, hydrostatics, and dynamics. The book begins with discussion of the concepts of mechanics, parallel forces and rigid bodies, kinematics, motion with uniform acceleration in a straight line, and Newton's law of motion. Separate chapters cover vector algebra and coplanar motion, relative motion, projectiles, friction, and rigid bodies in equilibrium under the action of coplanar forces. The final chapters deal with machines and hydrostatics. The standard and content of the book covers C.S.E. and 'O' level G.C.E. examinations in Applied Mathematics and Mechanics as well as the relevant parts of the syllabuses for Physics and General Science courses related to Engineering, Building, and Agriculture. The book is also written for the home study reader who is interested in widening his mathematical appreciation or simply reviving forgotten ideas. The author hopes that the style of presentation will be found sufficiently attractive to recapture those who may at one time have lost interest.
Achieve High-Quality Mathematics Discourse With Purposeful Talk Techniques Many mathematics teachers agree that engaging students in high quality discourse is important for their conceptual learning, but successfully promoting such discourse in elementary classrooms—with attention to the needs of every learner—can be a challenge. Activating Math Talk tackles this challenge by bringing practical, math-specific, productive discourse techniques that are applicable to any lesson or curriculum. Framed around 11 student-centered discourse techniques, this research-based book connects purposeful instructional techniques to specific lesson goals and includes a focus on supporting emergent multilingual learners. You will be guided through each technique with Classroom examples of tasks and techniques spanning grades K–5 Reflection moments to help you consider how key ideas relate to your own instruction Classroom vignettes that illustrate the techniques in action and provide opportunities to analyze and prepare for your own implementation Group discussion questions for engaging with colleagues in your professional community Achieving high-quality mathematics discourse is within your reach using the clear-cut techniques that activates your math talk efforts to promote every student’s conceptual learning.
The theory of the stability of motion has gained increasing signifi cance in the last decades as is apparent from the large number of publi cations on the subject. A considerable part of this work is concerned with practical problems, especially problems from the area of controls and servo-mechanisms, and concrete problems from engineering were the ones which first gave the decisin' impetus for the expansion and modern development of stability theory. In comparison with the many single publications, which are num bered in the thousands, the number of books on stability theory, and especially books not \\Titten in Russian, is extraordinarily small. Books which giw the student a complete introduction into the topic and which simultaneously familiarize him with the newer results of the theory and their applications to practical questions are completely lacking. I hope that the book which I hereby present will to some extent do justice to this double task. I haw endeavored to treat stability theory as a mathe matical discipline, to characterize its methods, and to prove its theorems rigorollsly and completely as mathematical theorems. Still I always strove to make reference to applications, to illustrate the arguments with examples, and to stress the interaction between theory and practice. The mathematical preparation of the reader should consist of about two to three years of university mathematics.
A graduate-course text, written for readers familiar with measure-theoretic probability and discrete-time processes, wishing to explore stochastic processes in continuous time. The vehicle chosen for this exposition is Brownian motion, which is presented as the canonical example of both a martingale and a Markov process with continuous paths. In this context, the theory of stochastic integration and stochastic calculus is developed, illustrated by results concerning representations of martingales and change of measure on Wiener space, which in turn permit a presentation of recent advances in financial economics. The book contains a detailed discussion of weak and strong solutions of stochastic differential equations and a study of local time for semimartingales, with special emphasis on the theory of Brownian local time. The whole is backed by a large number of problems and exercises.
We study Brakke's motion of varifolds by mean curvature in the special case that the initial surface is an integral cycle, giving a new existence proof by mean of elliptic regularization. Under a uniqueness hypothesis, we obtain a weakly continuous family of currents solving Brakke's motion. These currents remain within the corresponding level-set motion by mean curvature, as defined by Evans-Spruck and Chen-Giga-Goto. Now let [italic capital]T0 be the reduced boundary of a bounded set of finite perimeter in [italic capital]R[superscript italic]n. If the level-set motion of the support of [italic capital]T0 does not develop positive Lebesgue measure, then there corresponds a unique integral [italic]n-current [italic capital]T, [partial derivative/boundary/degree of a polynomial symbol][italic capital]T = [italic capital]T0, whose time-slices form a unit density Brakke motion. Using Brakke's regularity theorem, spt [italic capital]T is smooth [script capital]H[superscript italic]n-almost everywhere. In consequence, almost every level-set of the level-set flow is smooth [script capital]H[superscript italic]n-almost everywhere in space-time.