Download Free Materials Testing For The Metal Forming Industry Book in PDF and EPUB Free Download. You can read online Materials Testing For The Metal Forming Industry and write the review.

This book is addressed to both research scientists at universities and technical institutes and to engineers in the metal forming industry. It is based upon the author's experience as head of the Materials Science Department of the In stitut fUr Umformtechnik at the University of Stuttgart. The book deals with materials testing for the special demands of the metal for ming industry. The general methods of materials testing, as far as they are not directly related to metal forming, are not considered in detail since many books are available on this subject. Emphasis is put on the determination of processing properties of metallic materials in metal forming, i. e. the forming behavior. This includes the evaluation of stress-strain curves by tensile, up setting or torsion tests as well as determining the limits of formability. Among these subjects, special emphasis has been laid upon recent developments in the field of compression and torsion testing. The transferability of test results is discussed. Some testing methods for the functional properties of workpieces in the final state after metal forming are described. Finally, methods of testing tool materials for bulk metal forming are treated. Testing methods for surface properties and tribological parameters have not been included. The emphasis is put on the deformation of the specimens. Prob lems related to the testing machines and measuring techniques as well as the use of computers are only considered in very few cases deemed necessary.
A professional reference for advanced courses in two of the most common manufacturing processes: metal forming and metal cutting.
After a brief introduction into crystal plasticity,the fun- damentals of crystallographic textures and plastic anisotro- py, a main topic of this book, are outlined. A large chapter is devoted to formability testing both for bulk metal and sheet metal forming. For the first time testing methods for plastic anisotropy of round bars and tubes are included. A profound survey is given of literature about yield criteria for anisotropic materials up to most recent developments and the calculation of forming limits of anisotropic sheet me- tal. Other chapters are concerned with properties of workpieces after metal forming as well as the fundamentals of the theory of plasticity and finite element simulation of metal forming processes. The book is completed by a collection of tables of international standards for formability testing and of flow curves of metals which are most commonly used in metal forming. It is addressed both to university and industrial readers.
The pressing of sheet metal into useful shapes is a technology which requires an understanding of a wide range of subjects. This text is divided into three sections: processes, materials and tests. In Part 1, sheet metal forming is examined mainly from a mechanical engineering viewpoint; firstly plasticity and anisotropy, then process variables - friction, lubrication and temperature - and finally practical aspects of forming in the press-shop. Part 2 deals with the main sheet alloys at varying lengths, depending on their industrial popularity. Certain research results, showing the fallibility of the phenomenological approach, are also highlighted. A section of testing procedures concludes the volume.
Descripción del editor: "heet forming fundamentals are thoroughly addressed in this comprehensive reference for the practical and efficient use of sheet forming technologies. The principle variables of sheet forming-including the interactions between variables-are clearly explained, as a basic foundation for the most effective use of computer aided modeling in process and die design.Topics include stress analysis, formability criteria, tooling, and materials for sheet forming. The book also covers the latest developments in sheet metal forming technology, including servo-drive presses and their applications, and advanced cushion systems in mechanical and hydraulic presses." (ASM International).
The concept of virtual manufacturing has been developed in order to increase the industrial performances, being one of the most ef cient ways of reducing the m- ufacturing times and improving the quality of the products. Numerical simulation of metal forming processes, as a component of the virtual manufacturing process, has a very important contribution to the reduction of the lead time. The nite element method is currently the most widely used numerical procedure for s- ulating sheet metal forming processes. The accuracy of the simulation programs used in industry is in uenced by the constitutive models and the forming limit curves models incorporated in their structure. From the above discussion, we can distinguish a very strong connection between virtual manufacturing as a general concept, ?nite element method as a numerical analysis instrument and constitutive laws,aswellas forming limit curves as a speci city of the sheet metal forming processes. Consequently, the material modeling is strategic when models of reality have to be built. The book gives a synthetic presentation of the research performed in the eld of sheet metal forming simulation during more than 20 years by the members of three international teams: the Research Centre on Sheet Metal Forming—CERTETA (Technical University of Cluj-Napoca, Romania); AutoForm Company from Zürich, Switzerland and VOLVO automotive company from Sweden. The rst chapter presents an overview of different Finite Element (FE) formu- tions used for sheet metal forming simulation, now and in the past.
This 2001 book describes the most important numerical techniques for simulating metal forming operations.
Metal forming processes include bulk forming and sheet metal forming with numerous applications. This book covers some of the latest developments aspects of these processes such as numerical simulations to achieve optimum combinations and to get insight into process capability. Implementation of new technologies to improve performance based on Computer Numerical Control (CNC) technologies are also discussed, including the use of CAD/CAM/CAE techniques to enhance precision in manufacturing. Applications of AI/ML, the Internet of Things (IoT), and the role of tribological aspects in green engineering are included to suit Industry 4.0. Features: Covers latest developments in various sheet metal forming processes Discusses improvements in numerical simulation with various material models Proposes improvements by optimum combination of process parameters Includes finite element simulation of processes and formability Presents a review on techniques to produce ultra-fine-grained materials This book is aimed at graduate students, engineers, and researchers in sheet metal forming, materials processing and their applications, finite element analysis, manufacturing, and production engineering.