Download Free Materials Structure And Heat And Mass Transfer Book in PDF and EPUB Free Download. You can read online Materials Structure And Heat And Mass Transfer and write the review.

Special topic volume with invited peer-reviewed papers only
These papers present international research results on building heat and mass transport, necessary for energy-efficient buildings. It contains papers from the Twenty-First Symposium of the International Centre for Heat and Mass Transfer 1989, conducted in Yugoslavia.
Heat and Mass Transfer in Capillary-Porous Bodies describes the modern theory of heat and mass transfer on the basis of the thermodynamics of irreversible processes. This book provides a systematic account of the phenomena of heat and mass transfer in capillary-porous bodies. Organized into 10 chapters, this book begins with an overview of the processes of the transfer of heat and mass of a substance. This text then examines the application of the theory to the investigation of heat and mass exchange in walls and in technological processes for the manufacture of building materials. Other chapters consider the thermal properties of building materials by using the methods of the thermodynamics of mass transfer. The final chapter deals with the method of finite differences, which is applicable to the solution of problems of non-steady heat conduction. This book is a valuable resource for scientists, post-graduate students, engineers, and students in higher educational establishments for architectural engineering.
This text provides a teachable and readable approach to transport phenomena (momentum, heat, and mass transport) by providing numerous examples and applications, which are particularly important to metallurgical, ceramic, and materials engineers. Because the authors feel that it is important for students and practicing engineers to visualize the physical situations, they have attempted to lead the reader through the development and solution of the relevant differential equations by applying the familiar principles of conservation to numerous situations and by including many worked examples in each chapter. The book is organized in a manner characteristic of other texts in transport phenomena. Section I deals with the properties and mechanics of fluid motion; Section II with thermal properties and heat transfer; and Section III with diffusion and mass transfer. The authors depart from tradition by building on a presumed understanding of the relationships between the structure and properties of matter, particularly in the chapters devoted to the transport properties (viscosity, thermal conductivity, and the diffusion coefficients). In addition, generous portions of the text, numerous examples, and many problems at the ends of the chapters apply transport phenomena to materials processing.
This book, "Heat and Mass Transfer in Porous Media", presents a set of new developments in the field of basic and applied research work on the physical and chemical aspects of heat and mass transfer phenomena in a porous medium domain, as well as related material properties and their measurements. The book contents include both theoretical and experimental developments, providing a self-contained major reference that is appealing to both the scientists and the engineers. At the same time, these topics will encounter of a variety of scientific and engineering disciplines, such as chemical, civil, agricultural, mechanical engineering, etc. The book is divided in several chapters that intend to be a short monograph in which the authors summarize the current state of knowledge for benefit of professionals.
Conjugate Heat and Mass Transfer in Heat Mass Exchanger Ducts bridges the gap between fundamentals and recent discoveries, making it a valuable tool for anyone looking to expand their knowledge of heat exchangers. The first book on the market to cover conjugate heat and mass transfer in heat exchangers, author Li-Zhi Zhang goes beyond the basics to cover recent advancements in equipment for energy use and environmental control (such as heat and moisture recovery ventilators, hollow fiber membrane modules for humidification/dehumidification, membrane modules for air purification, desiccant wheels for air dehumidification and energy recovery, and honeycomb desiccant beds for heat and moisture control). Explaining the data behind and the applications of conjugated heat and mass transfer allows for the design, analysis, and optimization of heat and mass exchangers. Combining this recently discovered data into one source makes it an invaluable reference for professionals, academics, and other interested parties. - A research-based approach emphasizing numerical methods in heat mass transfer - Introduces basic data for exchangers' design (such as friction factors and the Nusselt/Sherwood numbers), methods to solve conjugated problems, the modeling of various heat and mass exchangers, and more - The first book to include recently discovered advancements of mass transfer and fluid flow in channels comprised of new materials - Includes illustrations to visually depict the book's key concepts
"An Introduction to Transport Phenomena in Materials Engineering elucidates the important role of conduction, convection, and radiation heat transfer, mass transport in solids and fluids, and internal and external fluid flow in the behavior of materials processes. These phenomena are critical in materials engineering because of the connection of transport to the evolution and distribution of microstructural properties during processing. From making choices in derivation of fundamental conservation equations, to using scaling (order-of-magnitude) analysis showing relationships among different phenomena, to giving examples of how to represent real systems by simple models, the book takes the reader through the fundamentals of transport phenomena applied to materials processing. Fully updated, this Third Edition of a classic textbook offers a significant shift from the previous editions in the approach to this subject, representing an evolution incorporating the original ideas and extending them to a more comprehensive approach to the topic. The text: introduces order of magnitude (scaling) analysis and uses it to quickly obtain approximate solutions for complicated problems throughout the book, focuses on building models to solve practical problems, adds new sections on non-Newtonian flows, turbulence, and measurement of heat transfer coefficients and offers expanded sections on thermal resistance networks, transient heat transfer, two-phase diffusion mass transfer, and flow in porous media. Additional features: more homework problems, mostly on the analysis of practical problems, and new examples from a much broader range of materials classes and processes, including metals, ceramics, polymers, and electronic materials, includes homework problems for the review of the mathematics required for a course based on this book and connects the theory represented by mathematics with real-world problems. This text is aimed at advanced engineering undergraduates and students early in their graduate studies, as well as practicing engineers interested in understanding the behavior of heat and mass transfer and fluid flow during materials processing. While it is designed primarily for materials engineering education, it is a good reference for practicing materials engineers looking for insight into phenomena controlling their processes. A solutions manual, lectures slides, and figure slides are available for qualifying adopting professors"--
Learn and apply heat and mass transfer principles to real-world chemical engineering problems This hands-on textbook provides a concept-based introduction to heat and mass transfer procedures and lays out the foundation to practical applications in a broad range of fields relevant to chemical and biochemical processing. Written by a recognized academic and experienced author, Heat and Mass Transfer for Chemical Engineers: Principles and Applications contains comprehensive discussions on conductive and diffusive processes and the engineering correlations between momentum, heat, and mass transfer. Readers will get Mathematica workbooks that facilitate calculations and explore trends. The book refers extensively to Perry's Chemical Engineers' Handbook, Ninth Edition for data and correlations. Coverage includes: Introduction to heat and mass transfer Thermal conductivity Steady-state, one-dimensional heat conduction Combined conductive and convective heat transfer Multidimensional and transient heat conduction Convective heat transfer Thermal design of heat exchangers Fick’s law and diffusivity One-dimensional, multi-dimensional, and transient diffusion Convective mass transfer Design of packed gas absorption and stripping columns Multicomponent diffusion and coupled mass transfer processes Mass transfer with chemical reaction
This book contains the proceedings of the thirteenth conference in the well established series on Simulation and Experiments in Heat Transfer and its applications