Download Free Materials Science Of Concrete Book in PDF and EPUB Free Download. You can read online Materials Science Of Concrete and write the review.

DVD features highlights from the conference held at Columbia University.
Materials Science in Construction explains the science behind the properties and behaviour of construction's most fundamental materials (metals, cement and concrete, polymers, timber, bricks and blocks, glass and plaster). In particular, the critical factors affecting in situ materials are examined, such as deterioration and the behaviour and durability of materials under performance. An accessible, easy-to-follow approach makes this book ideal for all diploma and undergraduate students on construction-related courses taking a module in construction materials.
Waste and Supplementary Cementitious Materials in Concrete: Characterisation, Properties and Applications provides a state-of-the-art review of the effective and efficient use of these materials in construction. Chapters focus on a specific type of material, addressing their characterization, strength, durability and structural applications. Sections include discussions of the properties of materials, including their physical, chemical and characterization, their strength and durability, modern engineering applications, case studies, the state of codes and standards of implementation, cost considerations, and the role of materials in green and sustainable construction. The book concludes with a discussion of research needs. - Focuses on material properties and applications (as well as 'sustainability' aspects) of cementitious materials - Assembles leading researchers from diverse areas of study - Ideas for use as a 'one stop' reference for advanced postgraduate courses focusing on sustainable construction materials
The series Advances in Polymer Science presents critical reviews of the present and future trends in polymer and biopolymer science. It covers all areas of research in polymer and biopolymer science including chemistry, physical chemistry, physics, material science. The thematic volumes are addressed to scientists, whether at universities or in industry, who wish to keep abreast of the important advances in the covered topics. Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist. Review articles for the individual volumes are invited by the volume editors. Single contributions can be specially commissioned. Readership: Polymer scientists, or scientists in related fields interested in polymer and biopolymer science, at universities or in industry, graduate students
This textbook presents the art and science of concrete in a simple, clear, hands-on manner, focusing on the following: Cement and concrete are predicted to be the premier building material of the 21st Century; Includes unique diagrams, photographs, and summary tables; Updated to include new chapters on non-destructive methods for concrete; future challenges in concrete technology; an increased number of examples of concrete applications; and new developments in durability.
This book presents an in-depth approach to concrete ingredients and their relationships to concrete by discussing their properties, pertinent test methods, specifications, proper use and selection, and solutions to problems in practice. The approach is practice oriented, and the book assists in the improved application of concrete through a thorough understanding of its ingredients. This is aided by the discussion of certain fundamental aspects and relationships in quantitative forms, and by also presenting the interpretation of research and experience. An extensive bibliography is included.The book is a current, organized summary of knowledge concerning concrete-making materials, which will enable the engineer/user to make the best possible product using these materials.
This volume provides broad coverage of key issues related to the role of calcium hydroxide in cements and concrete. It contains critical topics such as the physicochemical role calcium hydroxide plays in hydration and deterioration of cementing properties as well as the implications of the presence of calcium hydroxide on the future of Portland cement, blended and specialty cements, and ecology of cement production.
Concrete: We use it for our buildings, bridges, dams, and roads. We walk on it, drive on it, and many of us live and work within its walls. But very few of us know what it is. We take for granted this ubiquitous substance, which both literally and figuratively comprises much of modern civilization's constructed environment; yet the story of its creation and development features a cast of fascinating characters and remarkable historical episodes. Featuring a new epilogue on the Surfside condominium collapse and the current state of infrastructure in America, this book delves into this history, opening readers' eyes at every turn. In a lively narrative peppered with intriguing details, author Robert Courland describes how some of the most famous personalities of history became involved in the development and use of concrete-including King Herod the Great of Judea, the Roman emperor Hadrian, Thomas Edison (who once owned the largest concrete cement plant in the world), and architect Frank Lloyd Wright. Courland points to recent archaeological evidence suggesting that the discovery of concrete directly led to the Neolithic Revolution and the rise of the earliest civilizations. Much later, the Romans reached extraordinarily high standards for concrete production, showcasing their achievement in iconic buildings like the Coliseum and the Pantheon. Amazingly, with the fall of the Roman Empire, the secrets of concrete manufacturing were lost for over a millennium. The author explains that when concrete was rediscovered in the late eighteenth century it was initially viewed as an interesting novelty or, at best, a specialized building material suitable only for a narrow range of applications. It was only toward the end of the nineteenth century that the use of concrete exploded. During this rapid expansion, industry lobbyists tried to disguise the fact that modern concrete had certain defects and critical shortcomings. It is now recognized that modern concrete, unlike its Roman predecessor, gradually disintegrates with age. Compounding this problem is another distressing fact: the manufacture of concrete cement is a major contributor to global warming. Concrete Planet is filled with incredible stories, fascinating characters, surprising facts, and an array of intriguing insights into the building material that forms the basis of the infrastructure on which we depend.
Lea's Chemistry of Cement and Concrete deals with the chemical and physical properties of cements and concretes and their relation to the practical problems that arise in manufacture and use. As such it is addressed not only to the chemist and those concerned with the science and technology of silicate materials, but also to those interested in the use of concrete in building and civil engineering construction. Much attention is given to the suitability of materials, to the conditions under which concrete can excel and those where it may deteriorate and to the precautionary or remedial measures that can be adopted. First published in 1935, this is the fourth edition and the first to appear since the death of Sir Frederick Lea, the original author. Over the life of the first three editions, this book has become the authority on its subject. The fourth edition is edited by Professor Peter C. Hewlett, Director of the British Board of Agrement and visiting Industrial Professor in the Department of Civil Engineering at the University of Dundee. Professor Hewlett has brought together a distinguished body of international contributors to produce an edition which is a worthy successor to the previous editions.
Since the publication of the first edition ten years ago, significant developments have occurred in the use of admixtures in concrete. Eight new chapters and a full update of the preceding ten chapters bring this book up to date; reflecting the relative advances made in the science and technology of different groups of admixtures. The increased role and development of admixtures in concrete technology is evidenced by a number of conferences, publications, and novel admixtures available in the market place. These developments in the field caused the modification of many chapters in the first edition in order to reflect the advances. Although individual chapters refer to standards and specifications of admixtures, those only interested in the standards or techniques used in investigating admixtures will find the second chapter (Research Technologies, Standards, and Specifications) useful. Admixtures are not as inert as may be presumed. They may chemically interact with the constituents of concrete and affect the properties of the fresh and hardened concrete and its durability. The third chapter deals with these aspects. It was important to devote a chapter to recent attempts in developing new admixtures.