Download Free Materials Reliability In Microelectronics Book in PDF and EPUB Free Download. You can read online Materials Reliability In Microelectronics and write the review.

MRS books on materials reliability in microelectronics have become the snapshot of progress in this field. Reduced feature size, increased speed, and larger area are all factors contributing to the continual performance and functionality improvements in integrated circuit technology. These same factors place demands on the reliability of the individual components that make up the IC. Achieving increased reliability requires an improved understanding of both thin-film and patterned-feature materials properties and their degradation mechanisms, how materials and processes used to fabricate ICs interact, and how they may be tailored to enable reliability improvements. This book focuses on the physics and materials science of microelectronics reliability problems rather than the traditional statistical, accelerated electrical testing aspects. Studies are grouped into three large sections covering electromigration, gate oxide reliability and mechanical stress behavior. Topics include: historical summary; reliability issues for Cu metallization; characterization of electromigration phenomena; modelling; microstructural evolution and influences; oxide and device reliability; thin oxynitride dielectrics; noncontact diagnostics; stress effects in thin films and interconnects and microbeam X-ray techniques for stress measurements.
The inexorable drive for increased integrated circuit functionality and performance places growing demands on the metal and dielectric thin films used in fabricating these circuits, as well as spurring demand for new materials applications and processes. This book directly addresses issues of widespread concern in the microelectronics industry - smaller feature sizes, new materials and new applications that challenge the reliability of new technologies. While the book continues the focus on issues related to interconnect reliability, such as electromigration and stress, particular emphasis is placed on the effects of microstructure. An underlying theme is understanding the importance of interactions among different materials and associated interfaces comprising a single structure with dimensions near or below the micrometer scale. Topics include: adhesion and fracture; gate oxide growth and oxide interfaces; surface preparation and gate oxide reliability; oxide degradation and defects; micro-structure, texture and reliability; novel measurement techniques; interconnect performance and reliability modeling; electromigration and interconnect reliability and stress and stress relaxation.
Reliability and Failure of Electronic Materials and Devices is a well-established and well-regarded reference work offering unique, single-source coverage of most major topics related to the performance and failure of materials used in electronic devices and electronics packaging. With a focus on statistically predicting failure and product yields, this book can help the design engineer, manufacturing engineer, and quality control engineer all better understand the common mechanisms that lead to electronics materials failures, including dielectric breakdown, hot-electron effects, and radiation damage. This new edition adds cutting-edge knowledge gained both in research labs and on the manufacturing floor, with new sections on plastics and other new packaging materials, new testing procedures, and new coverage of MEMS devices. Covers all major types of electronics materials degradation and their causes, including dielectric breakdown, hot-electron effects, electrostatic discharge, corrosion, and failure of contacts and solder joints New updated sections on "failure physics," on mass transport-induced failure in copper and low-k dielectrics, and on reliability of lead-free/reduced-lead solder connections New chapter on testing procedures, sample handling and sample selection, and experimental design Coverage of new packaging materials, including plastics and composites
This long-standing proceedings series is highly regarded as a premier forum for the discussion of microelectronics reliability issues. In this fifth book, emphasis is on the fundamental understanding of failure phenomena in thin-film materials. Special attention is given to electromigration and mechanical stress effects. The reliability of thin dielectrics and hot carrier degradation of transistors are also featured. Topics include: modeling and simulation of failure mechanisms; reliability issues for submicron IC technologies and packaging; stresses in thin films/lines; gate oxides; barrier layers; electromigration mechanisms; reliability issues for Cu metallizations; electromigration and microstructure; electromigration and stress voiding in circuit interconnects; and resistance measurements of electromigration damage.
Proceedings of the "MRS Symposium on Materials Reliability Issues in Microelectronics"--Dedication, p. xiii.
The continual evolution of integrated circuit architecture places ever-increasing demands on the metal and dielectric thin films used in fabricating these circuits. Not only must these materials meet performance and manufacturability requirements, they must also be highly reliable for many years under operating conditions. A thorough understanding of the failure mechanisms and the effect of processing conditions and material properties on reliability is required to achieve this, particularly if it is to be done while minimizing cost and maximizing performance. This book brings together researchers from academia and industry to discuss fundamental mechanisms and phenomena in the reliability field. Topics include: solder and barrier-layer reliability; electromigration modeling; electromigration in interconnects; advanced measurement techniques; mechanical behavior of back-end materials and adhesion and fracture.