Download Free Materials For High Temperature Power Generation And Process Plant Applications Book in PDF and EPUB Free Download. You can read online Materials For High Temperature Power Generation And Process Plant Applications and write the review.

First published in 2001. Routledge is an imprint of Taylor & Francis, an informa company.
Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants provides researchers in academia and industry with an essential overview of the stronger high-temperature materials required for key process components, such as membrane wall tubes, high-pressure steam piping and headers, superheater tubes, forged rotors, cast components, and bolting and blading for steam turbines in USC power plants. Advanced materials for future advanced ultra-supercritical power plants, such as superalloys, new martensitic and austenitic steels, are also addressed. Chapters on international research directions complete the volume. The transition from conventional subcritical to supercritical thermal power plants greatly increased power generation efficiency. Now the introductions of the ultra-supercritical (USC) and, in the near future, advanced ultra-supercritical (A-USC) designs are further efforts to reduce fossil fuel consumption in power plants and the associated carbon dioxide emissions. The higher operating temperatures and pressures found in these new plant types, however, necessitate the use of advanced materials. - Provides researchers in academia and industry with an authoritative and systematic overview of the stronger high-temperature materials required for both ultra-supercritical and advanced ultra-supercritical power plants - Covers materials for critical components in ultra-supercritical power plants, such as boilers, rotors, and turbine blades - Addresses advanced materials for future advanced ultra-supercritical power plants, such as superalloys, new martensitic and austenitic steels - Includes chapters on technologies for welding technologies
Over the last forty years a wide range of surface coatings have been developed to address the surface stability and thermal insulation of materials used in the gas turbine section of aero, industrial and land-based power generation equipment. High Temperature Surface Engineering, the Proceedings of the Sixth International Conference in the Series ‘Engineering the Surfaces’, reviews the surfacing technologies appropriate to oxidation, corrosion and thermal protection. Factors which underpin their choice for any given application are discussed in the proceedings. This highlights the importance of developing representative mechanical and physical test methods to elucidate coating degradation modes as an aid to establishing coating systems with improved engineering performance. During the organisation of the conference and in the compiling of this book we have been privileged to work with many of the leading specialists in the field of High Temperature Surface Engineering and it is our hope that this book will be a valuable reference guide for Engineers and Material Scientists.
High-performance alloys that can withstand operation in hazardous nuclear environments are critical to presentday in-service reactor support and maintenance and are foundational for reactor concepts of the future. With commercial nuclear energy vendors and operators facing the retirement of staff during the coming decades, much of the scholarly knowledge of nuclear materials pursuant to appropriate, impactful, and safe usage is at risk. Led by the multi-award winning editorial team of G. Robert Odette (UCSB) and Steven J. Zinkle (UTK/ORNL) and with contributions from leaders of each alloy discipline, Structural Alloys for Nuclear Energy Applications aids the next generation of researchers and industry staff developing and maintaining steels, nickel-base alloys, zirconium alloys, and other structural alloys in nuclear energy applications. This authoritative reference is a critical acquisition for institutions and individuals seeking state-of-the-art knowledge aided by the editors' unique personal insight from decades of frontline research, engineering and management. - Focuses on in-service irradiation, thermal, mechanical, and chemical performance capabilities. - Covers the use of steels and other structural alloys in current fission technology, leading edge Generation-IV fission reactors, and future fusion power reactors. - Provides a critical and comprehensive review of the state-of-the-art experimental knowledge base of reactor materials, for applications ranging from engineering safety and lifetime assessments to supporting the development of advanced computational models.
Current fleets of conventional and nuclear power plants face increasing hostile environmental conditions due to increasingly high temperature operation for improved capacity and efficiency, and the need for long term service. Additional challenges are presented by the requirement to cycle plants to meet peak-load operation. This book presents a comprehensive review of structural materials in conventional and nuclear energy applications. Opening chapters address operational challenges and structural alloy requirements in different types of power plants. The following sections review power plant structural alloys and methods to mitigate critical materials degradation in power plants.
In recent years, superalloys have been widespread usage in aerospace gas turbine engine parts. The main reason of it is that these materials have high yield, ultimate tensile strength, and very good corrosion/oxidation resistance, and they combine these good properties with an excellent creep resistance at elevated temperatures. In spite of their outstanding properties, superalloys can lose their mechanical strength because of wear, tear, and crack formation when they are exposed to high-service temperatures and heavy working conditions. Moreover, corrosion is another important issue for superalloys because the materials of gas turbine engine parts are exposed to harsh engine environments, which consist of many pollutants and hot gases. Therefore, special attention must be given to the corrosion behavior of superalloys. This book provides information on the interaction between the microstructure of alloys and their mechanical properties and also the position of superalloys in the manufacturing industry. Topics cover the minimization of the formation of microsegregation and detrimental phases in the GTA welding of superalloys, oxidation kinetics of nickel-based superalloys used in the manufacture of rings for aircraft engines, a review of the work done over the last two decades to understand the hot corrosion behavior of superalloys used in advanced coal-based power plants, ultrasonic-assisted machining of Inconel 718, dry high-speed turning of Ti-6Al-4V titanium alloy, and laser welding in dentistry. The book "Superalloys for Industry Applications" consists of contributions by scientists and engineers who are experienced in the production, design, and analysis of materials from all around the world. We hope that this book will be an irreplaceable source of study for manufacturing, degradation mechanisms, and reliability of superalloys.
Coal- and gas-based power plants currently supply the largest proportion of the world's power generation capacity, and are required to operate to increasingly stringent environmental standards. Higher temperature combustion is therefore being adopted to improve plant efficiency and to maintain net power output given the energy penalty that integration of advanced emissions control systems cause. However, such operating regimes also serve to intensify degradation mechanisms within power plant systems, potentially affecting their reliability and lifespan.Power plant life management and performance improvement critically reviews the fundamental degradation mechanisms that affect conventional power plant systems and components, as well as examining the operation and maintenance approaches and advanced plant rejuvenation and retrofit options that the industry are applying to ensure overall plant performance improvement and life management.Part one initially reviews plant operation issues, including fuel flexibility, condition monitoring and performance assessment. Parts two, three and four focus on coal boiler plant, gas turbine plant, and steam boiler and turbine plant respectively, reviewing environmental degradation mechanisms affecting plant components and their mitigation via advances in materials selection and life management approaches, such as repair, refurbishment and upgrade. Finally, part five reviews issues relevant to the performance management and improvement of advanced heat exchangers and power plant welds.With its distinguished editor and international team of contributors, Power plant life management and performance improvement is an essential reference for power plant operators, industrial engineers and metallurgists, and researchers interested in this important field. - Provides an overview of the improvements to plant efficiency in coal- and gas-based power plants - Critically reviews the fundamental degradation mechanisms that affect conventional power plant systems and components, noting mitigation routes alongside monitoring and assessment methods - Addresses plant operation issues including fuel flexibility, condition monitoring and performance assessment
In Europe, thermoprocessing is the third largest energy consumption sector following traffic and room heating. Its structure is very much diversified and complex. Therefore it is split into a large number of subdivisions, each of them having a high importance for the industrial economy. Accordingly we find the application know-how for the design and the execution of respective equipment represented by a multitude of small but very specialized and significant companies and their experts. As a result there was only little chance to find a comprehensive survey of the practical side of this technology so far. This gap is now filled by the new "Handbook of Thermoprocessing Technologies" based on the contributions of many highly experienced, outstanding engineers working in this field. The main intention of this book is the presentation of practical thermal processing for the improvement of material and parts in industrial application. Additionally, a summary of respective thermal and material science fundamentals is given as well as basic fuel-related and electrical engineering knowledge for this technology and finally design aspects, components and safety requirements for the necessary heating installations are covered. In conclusion, a very wide and competent state of the art description is now available for all manufacturers and users of thermoprocessing equipment. But also specialists from neighbouring fields, students and all those who are generally interested in this important but widely unknown technology will find a quick survey here as well as a very profound expertise.
This book discusses the technology of high-temperature bolting materials and the design considerations of high-temperature bolted joints. It is based on the second international conference on high-temperature creep resistant materials held in York.