Download Free Materials And Contact Characterisation X Book in PDF and EPUB Free Download. You can read online Materials And Contact Characterisation X and write the review.

With the aim to facilitate the dissemination of research from both academia and the industrial community, presented works from the 10th International Conference on Computational Methods and Experiments in Material and Contact Characterisation are included in this book. These papers discuss the latest developments in this rapidly advancing field. The demand for high-quality production for both industry and consumers has led to rapid developments in materials science and engineering. This requires the characterisation of the properties of the materials. Of particular interest to industry and society are the knowledge of the surface treatment and contact mechanics of these materials to determine the in-service behaviour of components subject to contact conditions. Modern society requires systems that operate at conditions that use resources effectively. In terms of components durability, the understanding of surface engineering wear frictional and lubrication dynamics has never been so important. Current research is focused on modifications technologies that can increase the surface durability of materials. The characteristics of the system reveal which surface engineering methods should be chosen and as a consequence, it is essential to study the combination of surface treatment and contact mechanics. Combinations of different experimental techniques as well as computer simulation methods are essential to achieve a proper analysis. A very wide range of materials, starting with metals through polymers and semiconductors to composites, necessitates a whole spectrum of characteristic experimental techniques and research methods. Topics covered include: Experimental and measurement techniques; Mechanical testing and characterisation; Composites; Characterisation at multiple scales; Corrosion and erosion; Damage, fatigue and fracture; Recycled and reclaimed materials; Emerging materials and processing technology; Materials for energy systems; Contact mechanics; Coatings and surface treatments; Tribology and design; Biomechanical characterisation and applications; Residual stresses; Polymers and plastics; Computational methods and simulation; Biological materials; Evaluation and material processing.
Linking of materials properties with microstructures is a fundamental theme in materials science, for which a detailed knowledge of the modern characterization techniques is essential. Since modern materials such as high-temperature alloys, engineering thermoplastics and multilayer semiconductor films have many elemental constituents distributed in more than one phase, characterization is essential to the systematic development of such new materials and understanding how they behave in practical applications. X-ray techniques play a major role in providing information on the elemental composition and crystal and grain structures of all types of materials. The challenge to the materials characterization expert is to understand how specific instruments and analytical techniques can provide detailed information about what makes each material unique. The challenge to the materials scientist, chemist, or engineer is to know what information is needed to fully characterize each material and how to use this information to explain its behavior, develop new and improved properties, reduce costs, or ensure compliance with regulatory requirements. This comprehensive handbook presents all the necessary background to understand the applications of X-ray analysis to materials characterization with particular attention to the modern approach to these methods.
This book covers state-of-the-art techniques commonly used in modern materials characterization. Two important aspects of characterization, materials structures and chemical analysis, are included. Widely used techniques, such as metallography (light microscopy), X-ray diffraction, transmission and scanning electron microscopy, are described. In addition, the book introduces advanced techniques, including scanning probe microscopy. The second half of the book accordingly presents techniques such as X-ray energy dispersive spectroscopy (commonly equipped in the scanning electron microscope), fluorescence X-ray spectroscopy, and popular surface analysis techniques (XPS and SIMS). Finally, vibrational spectroscopy (FTIR and Raman) and thermal analysis are also covered.
Material and contact characterisation is a rapidly advancing field that requires the application of a combination of numerical and experimental methods. Including papers from the International Conference on Computational Methods and Experiments in Material and Contact Characterisation this volume presents the latest research in the field.
Including papers from the 9th edition of the International Conference on Computational Methods and Experiments in Material and Contact Characterisation this volume presents the work of selected researchers on the subject. Material and contact characterisation is a rapidly advancing field and this volume contains the latest research. Of particular interest to industry and society is the knowledge of surface treatment and contact mechanics of these materials to determine the in-service behaviour of components subject to contact conditions. Modern society requires systems that operate at conditions that use resources effectively. In terms of components durability, the understanding of surface engineering wear frictional and lubrication dynamics has never been so important. Current research is focussed on modification technologies that can increase the surface durability of materials. The characteristics of the system reveal which surface engineering methods should be chosen and as a consequence it is essential to study the combination of surface treatment and contact mechanics. The accurate characterisation of the physical and chemical properties of materials requires the application of both experimental techniques and computer simulation methods in order to gain a correct analysis. A very wide range of materials, starting with metals through polymers and semiconductors to composites, necessitates a whole spectrum of characteristic experimental techniques and research methods. The papers in the book cover a number of topics, including: Computer methods and simulation; Experimental and measurement techniques; Mechanical characterisation and testing; Materials under extreme conditions; Polymers and plastics; Advances in composites; Micro and macro characterisation; Corrosion and erosion; Damage, fatigue and fracture; Recycled materials; Materials and energy; Surface problems and contact mechanics; Surface modification and treatments; Thick and thin coatings; Tribomechanics and wear mechanics; Biomechanical characterisation; Biomechanical applications and Case studies.
Materials Characterization Using Nondestructive Evaluation (NDE) Methods discusses NDT methods and how they are highly desirable for both long-term monitoring and short-term assessment of materials, providing crucial early warning that the fatigue life of a material has elapsed, thus helping to prevent service failures. Materials Characterization Using Nondestructive Evaluation (NDE) Methods gives an overview of established and new NDT techniques for the characterization of materials, with a focus on materials used in the automotive, aerospace, power plants, and infrastructure construction industries. Each chapter focuses on a different NDT technique and indicates the potential of the method by selected examples of applications. Methods covered include scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques. The authors review both the determination of microstructure properties, including phase content and grain size, and the determination of mechanical properties, such as hardness, toughness, yield strength, texture, and residual stress. - Gives an overview of established and new NDT techniques, including scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques - Reviews the determination of microstructural and mechanical properties - Focuses on materials used in the automotive, aerospace, power plants, and infrastructure construction industries - Serves as a highly desirable resource for both long-term monitoring and short-term assessment of materials
This book focuses on the widely used experimental techniques available for the structural, morphological, and spectroscopic characterization of materials. Recent developments in a wide range of experimental techniques and their application to the quantification of materials properties are an essential side of this book. Moreover, it provides concise but thorough coverage of the practical and theoretical aspects of the analytical techniques used to characterize a wide variety of functional nanomaterials. The book provides an overview of widely used characterization techniques for a broad audience: from beginners and graduate students, to advanced specialists in both academia and industry.
Microstructural characterization is usually achieved by allowing some form of probe to interact with a carefully prepared specimen. The most commonly used probes are visible light, X-ray radiation, a high-energy electron beam, or a sharp, flexible needle. These four types of probe form the basis for optical microscopy, X-ray diffraction, electron microscopy, and scanning probe microscopy. Microstructural Characterization of Materials, 2nd Edition is an introduction to the expertise involved in assessing the microstructure of engineering materials and to the experimental methods used for this purpose. Similar to the first edition, this 2nd edition explores the methodology of materials characterization under the three headings of crystal structure, microstructural morphology, and microanalysis. The principal methods of characterization, including diffraction analysis, optical microscopy, electron microscopy, and chemical microanalytical techniques are treated both qualitatively and quantitatively. An additional chapter has been added to the new edition to cover surface probe microscopy, and there are new sections on digital image recording and analysis, orientation imaging microscopy, focused ion-beam instruments, atom-probe microscopy, and 3-D image reconstruction. As well as being fully updated, this second edition also includes revised and expanded examples and exercises, with a solutions manual available at http://develop.wiley.co.uk/microstructural2e/ Microstructural Characterization of Materials, 2nd Edition will appeal to senior undergraduate and graduate students of material science, materials engineering, and materials chemistry, as well as to qualified engineers and more advanced researchers, who will find the book a useful and comprehensive general reference source.
"This is a comprehensive volume on analytical techniques used in materials science for the characterization of surfaces, interfaces and thin films. This flagship volume is a unique, stand-alone reference for materials science practitioners, process engineers, students and anyone with a need to know about the capabilities available in materials analysis. An encyclopedia of 50 concise articles, this book will also be a practical companion to the forthcoming books in the series."--Knovel.
Experts must be able to analyze and distinguish all materials, or combinations of materials, in use today-whether they be metals, ceramics, polymers, semiconductors, or composites. To understand a material's structure, how that structure determines its properties, and how that material will subsequently work in technological applications, researche