Download Free Material Tissue Interfacial Phenomena Book in PDF and EPUB Free Download. You can read online Material Tissue Interfacial Phenomena and write the review.

Material-Tissue Interfacial Phenomena: Contributions from Dental and Craniofacial Reconstructions explores the material/tissue interfacial phenomena using dental and craniofacial reconstructions as a model system. As the mouth is a particularly caustic environment, the synthetic and/or bio-enabled materials used to repair damaged tissues and restore form, function, and esthetics to oral structures must resist a variety of physical, chemical, and mechanical challenges. These challenges are magnified at the interface between dissimilar structures such as the tooth/material interface. Interfacial reactions at the atomic, molecular, and nano-scales initiate the failure of materials used to repair, restore, and reconstruct dental and craniofacial tissues. Understanding the phenomena that lead to failure at the interface between dissimilar structures, such as synthetic materials and biologic tissues, is confounded by a variety of factors that are thoroughly discussed in this comprehensive book. - Provides a specific focus on the oral environment - Combines clinical views and basic science into a useful reference book - Presents comprehensive coverage of material-interfacial phenomena within the oral environment
One of the most exciting areas of polymer research is the study of interfacial phenomena and their practical applications. This major work reviews the key research in this important area and is used in such areas as biomaterials.Part one looks at the thermodynamics, kinetics and other fundamental properties of polymer surfaces and interfaces. The second part of the book reviews ways of characterising and manipulating interfacial phenomena. It includes examples of practical applications such as vaccine delivery, tissue engineering and the development of therapeutic lung surfactants.With its distinguished editor and international team of contributors, Molecular interfacial phenomena of polymers and biopolymers is a standard work on understanding polymeric interfacial properties and their medical and other practical applications. - Reviews key research in this hot area including biomaterials - Examines polymeric interfacial properties and reviews medical and other practical applications - Edited by a leading authority with contributions from distinguished experts worldwide
This book comprehensively reviews bonding to enamel, dentin and cementum and analyses relevant adhesion mechanisms. It is addressed to both the dental researcher and the clinician. Emphasis is placed on the characterization of material interfaces with dental tissues in situ. The volume also stresses the importance of appropriate experimental protocol design in facilitating clinically-relevant research methods, clarifies the mechanisms of adhesion of polymeric materials to hard dental tissues and furnishes a handy reference for routine clinical procedures in restorative and prosthetic dentistry as well as orthodontics. The book introduces important aspects of the chemistry of dental materials and their adaptation to dental hard tissues. It also analyses interfacial phenomena occurring during application of materials, including mechanical properties, and structural-compositional alterations. The text presents the current instrumental approaches in studying related issues and a summary of the current status of theories concerning bonding to dental tissues. This work, in its scope and scientific content, provides an in-depth view of the way in which aesthetic dentistry is currently being practiced.
Presents a synopsis of the theoretical principles and practical experience concerning the interfacial behaviour of bioproducts. The volume offers an interdisciplinary approach to the subject that highlights the importance of interfacial phenomena in bioprocessing systems, and the tools used to study and interpret the phenomena. It contains coverage ranging from fundamentals of bioproduct and solid surface structure to the interactions of multicomponent mixtures in heterogeneous.
Properties and applications of high surface area materials depend on interfacial phenomena, including diffusion, sorption, dissolution, solvation, surface reactions, catalysis, and phase transitions. Among the physicochemical methods that give useful information regarding these complex phenomena, nuclear magnetic resonance (NMR) spectroscopy is the most universal, yielding detailed structural data regarding molecules, solids, and interfaces. Nuclear Magnetic Resonance Studies of Interfacial Phenomena summarizes NMR research results collected over the past three decades for a wide range of materials—from nanomaterials and nanocomposites to biomaterials, cells, tissues, and seeds. This book describes the applications of important new NMR spectroscopic methods to a variety of useful materials and compares them with results from other techniques such as adsorption, differential scanning calorimetry, thermally stimulated depolarization current, dielectric relaxation spectroscopy, infrared spectroscopy, optical microscopy, and small-angle and wide-angle x-ray scattering. The text explores the application of NMR spectroscopy to examine interfacial phenomena in objects of increasing complexity, beginning with unmodified and modified silica materials. It then describes properties of various mixed oxides with comparisons to individual oxides and also describes carbon materials such as graphite and carbon nanotubes. Chapters deal with carbon–mineral hybrids and their mosaic surface structures, and interfacial phenomena at the surface of natural and synthetics polymers. They also explore a variety of biosystems, which are much more complex, including biomacromolecules (proteins, DNA, and lipids), cells and tissues, and seeds and herbs. The authors cover trends in interfacial phenomena investigations, and the final chapter describes NMR and other methods used in the book. This text presents a comprehensive description of a large array of hard and soft materials, allowing the analysis of the structure–property relationships and generalities on the interfacial behavior of materials and adsorbates.
Bioinspired Materials for Medical Applications examines the inspiration of natural materials and their interpretation as modern biomaterials. With a strong focus on therapeutic and diagnostic applications, the book also examines the development and manipulation of bioinspired materials in regenerative medicine. The first set of chapters is heavily focused on bioinspired solutions for the delivery of drugs and therapeutics that also offer information on the fundamentals of these materials. Chapters in part two concentrate on bioinspired materials for diagnosis applications with a wide coverage of sensor and imaging systems With a broad coverage of the applications of bioinspired biomaterials, this book is a valuable resource for biomaterials researchers, clinicians, and scientists in academia and industry, and all those who wish to broaden their knowledge in the allied field. - Explores how materials designed and produced with inspiration from nature can be used to enhance man-made biomaterials and medical devices - Brings together the two fields of biomaterials and bioinspired materials - Written by a world-class team of research scientists, engineers, and clinicians
HANDBOOK OF ARCHAEOLOGICAL SCIENCES A modern and comprehensive introduction to methods and techniques in archaeology In the newly revised Second Edition of the Handbook of Archaeological Sciences, a team of more than 100 researchers delivers a comprehensive and accessible overview of modern methods used in the archaeological sciences. The book covers all relevant approaches to obtaining and analyzing archaeological data, including dating methods, quaternary paleoenvironments, human bioarchaeology, biomolecular archaeology and archaeogenetics, resource exploitation, archaeological prospection, and assessing the decay and conservation of specimens. Overview chapters introduce readers to the relevance of each area, followed by contributions from leading experts that provide detailed technical knowledge and application examples. Readers will also find: A thorough introduction to human bioarchaeology, including hominin evolution and paleopathology The use of biomolecular analysis to characterize past environments Novel approaches to the analysis of archaeological materials that shed new light on early human lifestyles and societies In-depth explorations of the statistical and computational methods relevant to archaeology Perfect for graduate and advanced undergraduate students of archaeology, the Handbook of Archaeological Sciences will also earn a prominent place in the libraries of researchers and professionals with an interest in the geological, biological, and genetic basis of archaeological studies.
Chitosan Based Biomaterials: Tissue Engineering and Therapeutics, Volume 2, provides the latest information on chitosan, a natural polymer derived from the marine material chitin. Chitosan displays unique properties, most notably biocompatibility and biodegradability. It can also be easily tuned to modify its structure or properties, making chitosan an excellent candidate as a biomaterial. Consequently, chitosan is being developed for many biomedical functions, ranging from tissue engineering and implant coatings to drug and gene delivery. This book provides readers with a full coverage of the applications of chitosan-based biomaterials. - Presents specific focus on tissue engineering and therapeutics - Provides comprehensive treatment of all biomaterial applications of chitosan - Contains contributions by leading researchers with extensive experience in the material