Download Free Material Requirements For A Thorium Based Nuclear Fuel Book in PDF and EPUB Free Download. You can read online Material Requirements For A Thorium Based Nuclear Fuel and write the review.

The increase in the energy consumption and the expected growth in the nuclear capacity make it necessary to look for alternative fuels to replace uranium. The fuel chosen, which was also considered in the early stages of nuclear energy, is thorium. Thorium has some characteristics that make it valuable as a fuel, like its abundance, the low radiotoxicity of the waste generated, the higher economy regarding its larger absorption cross-section and higher burnups and the proliferation resistance as compared to uranium. Despite these benefits it also raises some questions relating its safe operation in the reactor. The aim of this work is to offer an overview about the use of thorium as a fuel element in a power reactor and the critical issues that the cladding faces. The programs run in different countries to use thorium, the benefits and challenges that presents and the physical configurations inside the reactor are explained. This work focuses in the configuration proposed by A.Radkowsky which is to have thorium (blanket) and enriched uranium (seed) in different assemblies. The physical schemes in the reactor core are the seed-blanket unit and the wholeassembly seed and blanket core. The increased power density, higher burnup and longer residence time in the reactor of thorium fuel enhance some potential failure mechanisms which are presented in this work. This thesis also seeks to give a general idea about the materials used in the reactor, focusing on the cladding that is the first barrier and the element subjected to toughest operating conditions. A modeling program called FEMAXI is used to simulate the interaction between the fuel element and the cladding in the high burnup region. Two physical phenomena are modeled, inner pressure and cladding corrosion, showing that the limiting factor would be corrosion due to the long residence time in the reactor. In order to understand the difficulties to reach the operating conditions of thorium fuel, an overlook at the licensing process is done. It shows the strict safety conditions which have to be accomplished, especially with postulated accidents.
What Is Thorium Fuel Cycle The fertile material in the thorium fuel cycle is an isotope of thorium called 232Th, and the thorium fuel cycle itself is a kind of nuclear fuel cycle. Within the reactor, 232Th is converted into the fissile artificial uranium isotope 233U, which is then used as the fuel for the nuclear reactor. Natural thorium, in contrast to natural uranium, only contains minute quantities of fissile material, which is insufficient to kick off a nuclear chain reaction. In order to kickstart the fuel cycle, either more fissile material or an other neutron source is required. 233U is created when 232Th, which is powered by thorium, absorbs neutrons in a reactor. This is analogous to the process that occurs in uranium breeder reactors, in which fertile 238U is subjected to neutron absorption in order to produce fissile 239Pu. The produced 233U either fissions in situ or is chemically removed from the old nuclear fuel and converted into new nuclear fuel, depending on the architecture of the reactor and the fuel cycle. Fissioning in situ is the more efficient method. How You Will Benefit (I) Insights, and validations about the following topics: Chapter 1: Thorium fuel cycle Chapter 2: Nuclear reactor Chapter 3: Radioactive waste Chapter 4: Fissile material Chapter 5: Nuclear fuel cycle Chapter 6: MOX fuel Chapter 7: Breeder reactor Chapter 8: Uranium-238 Chapter 9: Energy amplifier Chapter 10: Subcritical reactor Chapter 11: Integral fast reactor Chapter 12: Fertile material Chapter 13: Uranium-233 Chapter 14: Plutonium-239 Chapter 15: Isotopes of uranium Chapter 16: Isotopes of plutonium Chapter 17: Weapons-grade nuclear material Chapter 18: Uranium-236 Chapter 19: Burnup Chapter 20: Liquid fluoride thorium reactor Chapter 21: Nuclear transmutation (II) Answering the public top questions about thorium fuel cycle. (III) Real world examples for the usage of thorium fuel cycle in many fields. (IV) 17 appendices to explain, briefly, 266 emerging technologies in each industry to have 360-degree full understanding of thorium fuel cycle' technologies. Who This Book Is For Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of thorium fuel cycle.
Molten Salt Reactors and Thorium Energy, Second Edition is a fully updated comprehensive reference on the latest advances in MSR research and technology. Building on the successful first edition, Tom Dolan and the team of experts have fully updated the content to reflect the impressive advances from the last 5 years, ensuring this book continues to be the go-to reference on the topic. This new edition covers progress made in MSR design, details innovative experiments, and includes molten salt data, corrosion studies and deployment plans. The successful case studies section of the first edition have been removed, expanded, and fully updated, and are now published in a companion title called Global Case Studies on Molten Salt Reactors. Readers will gain a deep understanding of the advantages and challenges of MSR development and thorium fuel use, as well as step-by-step guidance on the latest in MSR reactor design. Each chapter provides a clear introduction, covers technical issues and includes examples and conclusions, while promoting the sustainability benefits throughout. A fully updated comprehensive handbook on Molten Salt Reactors and Thorium Energy, written by a team of global experts Covers MSR applications, technical issues, reactor types and reactor designs Includes 3 brand new chapters which reflect the latest advances in research and technology since the first edition published Presents case studies on molten salt reactors which aid in the transition to net zero by providing abundant clean, safe energy to complement wind and solar powe
Provides a critical review of the thorium fuel cycle: potential benefits and challenges in the thorium fuel cycle, mainly based on the latest developments at the front end of the fuel cycle, applying thorium fuel cycle options, and at the back end of the thorium fuel cycle.
The Thorium Energy Conference (ThEC13) gathered some of the world’s leading experts on thorium technologies to review the possibility of destroying nuclear waste in the short term, and replacing the uranium fuel cycle in nuclear systems with the thorium fuel cycle in the long term. The latter would provide abundant, reliable and safe energy with no CO2 production, no air pollution, and minimal waste production. The participants, representatives of 30 countries, included Carlo Rubbia, Nobel Prize Laureate in physics and inventor of the Energy Amplifier; Jack Steinberger, Nobel Prize Laureate in physics; Hans Blix, former Director General of the International Atomic Energy Agency (IAEA); Rolf Heuer, Director General of CERN; Pascal Couchepin, former President of the Swiss Confederation; and Claude Haegi, President of the FEDRE, to name just a few. The ThEC13 proceedings are a source of reference on the use of thorium for energy generation. They offer detailed technical reviews of the status of thorium energy technologies, from basic R&D to industrial developments. They also describe how thorium can be used in critical reactors and in subcritical accelerator-driven systems (ADS), answering the important questions: – Why is thorium so attractive and what is the role of innovation, in particular in the nuclear energy domain? – What are the national and international R&D programs on thorium technologies and how are they progressing? ThEC13 was organized jointly by the international Thorium Energy Committee (iThEC), an association based in Geneva, and the International Thorium Energy Organisation (IThEO). It was held in the Globe of Science and Innovation at the European Organization for Nuclear Research (CERN), Geneva, Switzerland, in October 2013.
This book comprises selected proceedings of the ThEC15 conference. The book presents research findings on various facets of thorium energy, including exploration and mining, thermo-physical and chemical properties of fuels, reactor physics, challenges in fuel fabrication, thorium fuel cycles, thermal hydraulics and safety, material challenges, irradiation experiences, and issues and challenges for the design of advanced thorium fueled reactors. Thorium is more abundant than uranium and has the potential to provide energy to the world for centuries if used in a closed fuel cycle. As such, technologies for using thorium for power generation in nuclear reactors are being developed worldwide. Since there is a strong global thrust towards designing nuclear reactors with thorium-based fuel, this book will be of particular interest to nuclear scientists, reactor designers, regulators, academics and policymakers.
Thermal and neutron physics analysis show that above certain concentrations of the isotope Pu-238 hypothetical nuclear explosive devices, made of reactor-grade plutonium, are technically not feasible. Future proliferation-proof fuel cycles are proposed which make use of methods of actinide tansmutation.Reactors operating in the thorium/uranium fuel cyce are loaded with
The Metallurgy of Nuclear Fuel: Properties and Principles of the Technology of Uranium, Thorium and Plutonium is a systematic analysis of the metallurgy of nuclear fuel, with emphasis on the physical, mechanical, and chemical properties as well as the technology of uranium, thorium, and plutonium, together with their alloys and compounds. The minerals and raw material sources of nuclear fuel are discussed, along with the principles of the technology of the raw material processing and the production of the principal compounds, and of the pure metals and alloys. Comprised of three parts, this volume begins with an introduction to the history of the discovery of uranium and its position in the periodic system; its use as a nuclear fuel; radioactivity and isotopic composition; alloys and compounds; and physical, mechanical, and chemical properties. The effect of mechanical and thermal treatment, thermal cycling and irradiation on the physicochemical properties of uranium is also examined. The next two sections are devoted to thorium and plutonium and includes chapters dealing with their uses, alloys and compounds, and methods of recovery and purification. This book is written for university students, but should also prove useful to young production engineers and scientific workers who are concerned with problems in the metallurgy of nuclear fuel.