Download Free Material Development Of Doped Hafnium Oxide For Non Volatile Ferroelectric Memory Application Book in PDF and EPUB Free Download. You can read online Material Development Of Doped Hafnium Oxide For Non Volatile Ferroelectric Memory Application and write the review.

Ferroelectricity in Doped Hafnium Oxide: Materials, Properties and Devices covers all aspects relating to the structural and electrical properties of HfO2 and its implementation into semiconductor devices, including a comparison to standard ferroelectric materials. The ferroelectric and field-induced ferroelectric properties of HfO2-based films are considered promising for various applications, including non-volatile memories, negative capacitance field-effect-transistors, energy storage, harvesting, and solid-state cooling. Fundamentals of ferroelectric and piezoelectric properties, HfO2 processes, and the impact of dopants on ferroelectric properties are also extensively discussed in the book, along with phase transition, switching kinetics, epitaxial growth, thickness scaling, and more. Additional chapters consider the modeling of ferroelectric phase transformation, structural characterization, and the differences and similarities between HFO2 and standard ferroelectric materials. Finally, HfO2 based devices are summarized. Explores all aspects of the structural and electrical properties of HfO2, including processes, modelling and implementation into semiconductor devices Considers potential applications including FeCaps, FeFETs, NCFETs, FTJs and more Provides comparison of an emerging ferroelectric material to conventional ferroelectric materials with insights to the problems of downscaling that conventional ferroelectrics face
As data processing and storage needs continue to grow at a rapid pace, the development of innovative memory technologies is crucial. The discovery of ferroelectricity in hafnia (HfO2)-based materials has garnered significant attention in both academia and industry, owing to their potential to revolutionize non-volatile memory (NVM) technology and enable novel computing architectures. HfO2-based ferroelectric materials offer advantages over conventional perovskite oxides, such as low-temperature synthesis and conformal growth in three-dimensional structures on silicon, making them compatible with complementary metal-oxide-semiconductor (CMOS) technology and ideal for device scaling. However, several challenges still exist for implementing ferroelectric HfO2 in commercial products, such as polarization variation during cycling (wake-up effect), high operation voltage, compatibility with back-end-of-line (BEOL) processing temperatures, and low memory density. In this dissertation, I tackled the challenges outlined above. I began by focusing on the Hf0.5Zr0.5O2 (HZO) material itself and addressing the wake-up effect through the introduction of an HfO2 buffer layer at the HZO/electrode interface. Subsequently, I developed a new measurement setup capable of directly measuring individual nm-sized devices, which enabled investigating the scaling effect in HZO-based ferroelectric capacitors. Through my research, I was able to demonstrate excellent ferroelectricity and reliability in ultra-thin HZO (4 nm) capacitors with molybdenum (Mo) electrodes. These capacitors exhibited low operation voltage, wake-up-free behavior, high endurance, and low RTA temperatures, making them highly desirable for practical applications. I also studied the size scaling effect down to 65 nm × 45 nm devices, where I observed ultra-high remanent polarization (2Pr) for the first time at this scale. In addition to exploring two-dimensional scaling to improve density, I also proposed a hybrid structure for 4 bits/cell storage, increasing the multi-bit capability in a single cell.
Innovations of memory technologies are essential for addressing the future needs of data processing and storage. The discovery of ferroelectricity in hafnia (HfO2)-based materials has led the re-emergence of ferroelectric memories in advanced semiconductor technologies, with the potential to reshape the technology landscape and to enable novel computing architectures. Ferroelectric HfO2 is promising for non-volatile memories (NVM) due to its ability to scale down to ultra-thin films and very small device dimensions. However, challenges are still present for implementation of ferroelectric HfO2 in commercial products developed for embedded memories, including limited programming cycle endurance and compatibility with the back-end-of-line (BEOL) processing temperature. This dissertation presents innovations at the material and device levels to realize high endurance and low thermal budget ferroelectric memories, followed by advanced material characterizations to probe the mechanisms behind. First, I will demonstrate an experimental investigation of ferroelectricity in CeO2 doped Hf0.5Zr0.5O2 (HZO) thin films.1 I will present an analysis encompassing measurements of switchable polarization, cycling endurance, stress-induced leakage current (SILC) and photoelectric effects to provide a comprehensive understanding of CeO2 doping effects on the conduction mechanism and reliability of CeO2-doped HZO polarization switching. Second, I will report an investigation of the crystal structure of ferroelectric HZO films as a function of atomic layer deposition (ALD) temperature. Our results suggests that optimization of HZO thin film synthesis defined by the ALD deposition temperature not only produces films with the highest ferroelectric polarization, but can achieve this at the low thermal budgets necessary for incorporation of ferroelectric HZO in BEOL devices.
This thesis evaluates the viability of ferroelectric Si:HfO2 and its derived FeFET application for non-volatile data storage. At the beginning, the ferroelectric effect is explained briefly such that the applications that make use of it can be understood. Afterwards, the latest findings on ferroelectric HfO2 are reviewed and their potential impact on future applications is discussed. Experimental data is presented afterwards focusing on the ferroelectric material characteristics of Si:HfO2 that are most relevant for memory applications. Besides others, the stability of the ferroelectric switching effect could be demonstrated in a temperature range of almost 400 K. Moreover, nanosecond switching speed and endurance in the range of 1 million to 10 billion cycles could be proven. Retention and imprint characteristics have furthermore been analyzed and are shown to be stable for 1000 hours bake time at 125 oC. Derived from the ferroelectric effect in HfO2, a 28 nm FeFET memory cell is introduced as the central application of this thesis. Based on numerical simulations, the memory concept is explained and possible routes towards an optimized FeFET cell are discussed. Subsequently, the results from electrical characterization of FeFET multi-structures are presented and discussed. By using Si:HfO2 it was possible to realize the world's first 28 nm FeFET devices possessing i.a. 10k cycling endurance and an extrapolated 10 year data retention at room temperature. The next step towards a FeFET memory is represented by connecting several memory cells into matrix-type configurations. A cell concept study illustrates the different ways in which FeFET cells can be combined together to give high density memory arrays. For the proposed architectures, operational schemes are theoretically discussed and analyzed by both electrical characterization of FeFET multi-structures and numerical simulations. The thesis concludes with the electrical characterization of small FeFET memory arrays. First results show that a separation between memory states can be achieved by applying poling and incremental step pulse programming (ISPP) sequences. These results represent an important cornerstone for future studies on Si:HfO2 and its related applications.
ADVANCED ULTRA LOW-POWER SEMICONDUCTOR DEVICES Written and edited by a team of experts in the field, this important new volume broadly covers the design and applications of metal oxide semiconductor field effect transistors. This outstanding new volume offers a comprehensive overview of cutting-edge semiconductor components tailored for ultra-low power applications. These components, pivotal to the foundation of electronic devices, play a central role in shaping the landscape of electronics. With a focus on emerging low-power electronic devices and their application across domains like wireless communication, biosensing, and circuits, this book presents an invaluable resource for understanding this dynamic field. Bringing together experts and researchers from various facets of the VLSI domain, the book addresses the challenges posed by advanced low-power devices. This collaborative effort aims to propel engineering innovations and refine the practical implementation of these technologies. Specific chapters delve into intricate topics such as Tunnel FET, negative capacitance FET device circuits, and advanced FETs tailored for diverse circuit applications. Beyond device-centric discussions, the book delves into the design intricacies of low-power memory systems, the fascinating realm of neuromorphic computing, and the pivotal issue of thermal reliability. Authors provide a robust foundation in device physics and circuitry while also exploring novel materials and architectures like transistors built on pioneering channel/dielectric materials. This exploration is driven by the need to achieve both minimal power consumption and ultra-fast switching speeds, meeting the relentless demands of the semiconductor industry. The book’s scope encompasses concepts like MOSFET, FinFET, GAA MOSFET, the 5-nm and 7-nm technology nodes, NCFET, ferroelectric materials, subthreshold swing, high-k materials, as well as advanced and emerging materials pivotal for the semiconductor industry’s future.
Advances in Nonvolatile Memory and Storage Technology, Second Edition, addresses recent developments in the non-volatile memory spectrum, from fundamental understanding, to technological aspects. The book provides up-to-date information on the current memory technologies as related by leading experts in both academia and industry. To reflect the rapidly changing field, many new chapters have been included to feature the latest in RRAM technology, STT-RAM, memristors and more. The new edition describes the emerging technologies including oxide-based ferroelectric memories, MRAM technologies, and 3D memory. Finally, to further widen the discussion on the applications space, neuromorphic computing aspects have been included. This book is a key resource for postgraduate students and academic researchers in physics, materials science and electrical engineering. In addition, it will be a valuable tool for research and development managers concerned with electronics, semiconductors, nanotechnology, solid-state memories, magnetic materials, organic materials and portable electronic devices. Discusses emerging devices and research trends, such as neuromorphic computing and oxide-based ferroelectric memories Provides an overview on developing nonvolatile memory and storage technologies and explores their strengths and weaknesses Examines improvements to flash technology, charge trapping and resistive random access memory
Not only conventional computer architectures, such as the von-Neumann architecture with its inevitable von-Neumann bottleneck, but likewise the emerging field of edge computing require to substantially decrease the spatial separation of logic and memory units to overcome power and latency shortages. The integration of logic operations into memory units (Logic-in-Memory), as well as memory elements into logic circuits (Nonvolatile Logic), promises to fulfill this request by combining high-speed with low-power operation. Ferroelectric field-effect transistors (FeFETs) based on hafnium oxide prove to be auspicious candidates for the memory elements in applications of that kind, as those nonvolatile memory elements are CMOS-compatible and likewise scalable. This work presents implementations that merge logic and memory by exploiting the natural capability of the FeFET to combine logic functionality (transistor) and memory ability (nonvolatility).
Ecological restrictions in many parts of the world are demanding the elimination of Pb from all consumer items. At this moment in the piezoelectric ceramics industry, there is no issue of more importance than the transition to lead-free materials. The goal of Lead-Free Piezoelectrics is to provide a comprehensive overview of the fundamentals and developments in the field of lead-free materials and products to leading researchers in the world. The text presents chapters on demonstrated applications of the lead-free materials, which will allow readers to conceptualize the present possibilities and will be useful for both students and professionals conducting research on ferroelectrics, piezoelectrics, smart materials, lead-free materials, and a variety of applications including sensors, actuators, ultrasonic transducers and energy harvesters.