Download Free Massive Neutrinos Book in PDF and EPUB Free Download. You can read online Massive Neutrinos and write the review.

An introduction to various issues related to the theory and phenomenology of massive neutrinos for the nonexpert, also providing a discussion of results in the field for the active researcher. All the necessary techniques and logics are included and topics such as supersymmetry are covered.
For many years neutrino was considered a massless particle. The theory of a two-componentneutrino,whichplayedacrucialroleinthecreationofthetheoryof theweakinteraction,isbasedontheassumptionthattheneutrinomassisequalto zero. We now know that neutrinos have nonzero, small masses. In numerous exp- iments with solar, atmospheric, reactor and accelerator neutrinos a new p- nomenon, neutrino oscillations, was observed. Neutrino oscillations (periodic transitionsbetweendifferent?avorneutrinos? ,? ,? )arepossibleonlyifneutrino e ? ? mass-squareddifferencesaredifferentfromzeroandsmalland?avorneutrinosare “mixed”. The discovery of neutrino oscillations opened a new era in neutrino physics: an era of investigation of neutrino masses, mixing, magnetic moments and other neutrino properties. After the establishment of the Standard Model of the el- troweak interaction at the end of the seventies, the discovery of neutrino masses was the most important discovery in particle physics. Small neutrino masses cannot be explained by the standard Higgs mechanism of mass generation. For their explanation a new mechanism is needed. Thus, small neutrino masses is the ?rst signature in particle physics of a new beyond the Standard Model physics. It took many years of heroic efforts by many physicists to discover n- trino oscillations. After the ?rst period of investigation of neutrino oscillations, manychallengingproblemsremainedunsolved.Oneofthemostimportantisthe problem of the nature of neutrinos with de?nite masses. Are they Dirac n- trinos possessing a conserved lepton number which distinguish neutrinos and antineutrinos or Majorana neutrinos with identical neutrinos and antineutrinos? Many experiments of the next generation and new neutrino facilities are now under preparation and investigation. There is no doubt that exciting results are ahead.
Neutrinos play a decisive part in nuclear and elementary particle physics, as well as in astrophysics and cosmology. Some of their most basic properties, such as their mass and charge conjugation symmetry, are largely unknown. This book focuses on what we know and may hope to know about the mass of the neutrino and its particle-antiparticle symmetry. Topics include neutrino mixing, neutrino decay, neutrino oscillations, double beta decay, solar neutrinos, supernova neutrinos and related issues. The authors stress the physical concepts, and discuss both theoretical and experimental techniques. This updated second edition differs from the first in that it contains an expanded coverage of experimental results and theoretical advances. Since publication of the first edition, many issues that were at that time unresolved, such as tritium beta decay and reactor neutrino oscillations, have been clarified and are discussed here. Also included is an expanded coverage of solar and supernova neutrinos. This book deals with one of the most intriguing issues in modern physics, and will be of value to researchers, graduate students and advanced undergraduates specializing in experimental and theoretical particle physics and nuclear physics.
This book explains the physics and phenomenology of massive neutrinos. The authors argue that neutrino mass is not unlikely and consider briefly the search for evidence of this mass in decay processes before they examine the physics and phenomenology of neutrino oscillation. The physics of Majorana neutrinos (neutrinos which are their own antiparticles) is then discussed. This volume requires of the reader only a knowledge of quantum mechanics and of very elementary quantum field theory.
This book explains the physics and phenomenology of massive neutrinos. The authors argue that neutrino mass is not unlikely and consider briefly the search for evidence of this mass in decay processes before they examine the physics and phenomenology of neutrino oscillation. The physics of Majorana neutrinos (neutrinos which are their own antiparticles) is then discussed. This volume requires of the reader only a knowledge of quantum mechanics and of very elementary quantum field theory.
A self-contained guide to the role played by neutrinos in the Universe and how their properties influence cosmological and astrophysical observations.
Summarizes the theoretical, phenomenological, and astrophysical aspects relevant to research on the possibility of a massive neutrino. Designed as an introduction to the subject for readers familiar with field theory, group theory, and the basic concepts in particle physics; and as a quick reference for old hands in the field. Annotation copyrighted by Book News, Inc., Portland, OR
The recent groundbreaking discovery of nonzero neutrino masses and oscillations has put the spotlight on massive neutrinos as one of the key windows on physics beyond the standard model as well as into the early universe. This third edition of the invaluable book Massive Neutrinos in Physics and Astrophysics is an introduction to the various issues related to the theory and phenomenology of massive neutrinos for the nonexpert, providing at the same time a complete and up-to-date discussion on the latest results in the field for the active researcher. It is designed not merely to be a guide but also as a self-contained tool for research with all the necessary techniques and logics included. Specially emphasized are the various implications of neutrino discoveries for the nature of new forces. Elementary discussions on topics such as grand unification, left-right symmetry and supersymmetry are presented. The most recent cosmological and astrophysical implications of massive neutrinos are also dealt with.