Download Free Mass Transport In Variable Density Flow Systems Book in PDF and EPUB Free Download. You can read online Mass Transport In Variable Density Flow Systems and write the review.

Introduction to the transport of energy, mass, and momentum in chemically reacting fluids for graduate or undergraduate students with no prior background in fluid mechanics. Solutions to selected exercises.
Offers a comprehensive volume discussing groundwater problems in coastal areas, spanning fundamental science to practical water management.
Transport Processes in Chemically Reacting Flow Systems discusses the role, in chemically reacting flow systems, of transport processes—particularly the transport of momentum, energy, and (chemical species) mass in fluids (gases and liquids). The principles developed and often illustrated here for combustion systems are important not only for the rational design and development of engineering equipment (e.g., chemical reactors, heat exchangers, mass exchangers) but also for scientific research involving coupled transport processes and chemical reaction in flow systems. The book begins with an introduction to transport processes in chemically reactive systems. Separate chapters cover momentum, energy, and mass transport. These chapters develop, state, and exploit useful quantitative ""analogies"" between these transport phenomena, including interrelationships that remain valid even in the presence of homogeneous or heterogeneous chemical reactions. A separate chapter covers the use of transport theory in the systematization and generalization of experimental data on chemically reacting systems. The principles and methods discussed are then applied to the preliminary design of a heat exchanger for extracting power from the products of combustion in a stationary (fossil-fuel-fired) power plant. The book has been written in such a way as to be accessible to students and practicing scientists whose background has until now been confined to physical chemistry, classical physics, and/or applied mathematics.
FEFLOW is an acronym of Finite Element subsurface FLOW simulation system and solves the governing flow, mass and heat transport equations in porous and fractured media by a multidimensional finite element method for complex geometric and parametric situations including variable fluid density, variable saturation, free surface(s), multispecies reaction kinetics, non-isothermal flow and multidiffusive effects. FEFLOW comprises theoretical work, modeling experiences and simulation practice from a period of about 40 years. In this light, the main objective of the present book is to share this achieved level of modeling with all required details of the physical and numerical background with the reader. The book is intended to put advanced theoretical and numerical methods into the hands of modeling practitioners and scientists. It starts with a more general theory for all relevant flow and transport phenomena on the basis of the continuum approach, systematically develops the basic framework for important classes of problems (e.g., multiphase/multispecies non-isothermal flow and transport phenomena, discrete features, aquifer-averaged equations, geothermal processes), introduces finite-element techniques for solving the basic balance equations, in detail discusses advanced numerical algorithms for the resulting nonlinear and linear problems and completes with a number of benchmarks, applications and exercises to illustrate the different types of problems and ways to tackle them successfully (e.g., flow and seepage problems, unsaturated-saturated flow, advective-diffusion transport, saltwater intrusion, geothermal and thermohaline flow).
Numerous industrial systems or natural environments involve multiphase flows with heat and mass transfer. The authors of this book present the physical modeling of these flows, in a unified way, which can include various physical aspects and several levels of complexity. Thermal engineering and nuclear reactors; the extraction and transport of petroleum products; diesel and rocket engines; chemical engineering reactors and fluidized beds; smoke or aerosol dispersion; landslides and avalanches &− the modeling of multiphase flows with heat and mass transfer for all these situations can be developed following a common methodology. This book is devoted to the description of the mathematical bases of how to incorporate adequate physical ingredients in agreement with known experimental facts and how to make the model evolve according to the required complexity. Contents Part 1. Approach and General Equations 1. Towards a Unified Description of Multiphase Flows. 2. Instant Equations for a Piecewise Continuous Medium. 3. Description of a “Mean Multiphase Medium”. 4. Equations for the Mean Continuous Medium. Part 2. Modeling: A Single Approach Adaptable to Multiple Applications 5. The Modeling of Interphase Exchanges. 6. Modeling Turbulent Dispersion Fluxes. 7. Modeling the Mean Gas–Liquid Interface Area per Unit Volume. 8. “Large Eddy Simulation” Style Models. 9. Contribution of Thermodynamics of Irreversible Processes. 10. Experimental Methods. 11. Some Experimental Results Pertaining to Multiphase Flow Properties that Are Still Little Understood. Part 3. From Fluidized Beds to Granular Media 12. Fluidized Beds. 13. Generalizations for Granular Media. 14. Modeling of Cauchy Tensor of Sliding Contacts. 15. Modeling the Kinetic Cauchy Stress Tensor. Part 4. Studying Fluctuations and Probability Densities 16. Fluctuations of the Gas Phase in Reactive Two-Phase Media. 17. Temperature Fluctuations in Condensed Phases. 18. Study of the PDF for Velocity Fluctuations and Sizes of Parcels. About the Authors Roland Borghi is Professor Emeritus at Ecole Centrale Marseille in France and works as a consultant in the space, petrol and automobile sectors. His research activities cover fluid mechanics, combustion and flames, and multi-phase and granular flows. He was a member of the CNRS scientific committee and a laureate of the French Academy of Science. Fabien Anselmet is Professor at Ecole Centrale Marseille in France. His research activities focus on the turbulence of fluids and its varied applications in industry and in fields linked to the environment. With a unified, didactic style, this text presents tangible models of multiphase flows with heat and mass transfer with attention to various levels of complexities. It addresses thermal engineering and nuclear reactors, extraction and transport of petroleum products, diesel engines and rocket engines, chemical engineering reactors and fluidized beds, smoke or aerosol dispersion, and landslides and avalanches. Engineers, researchers, and scientists will appreciate the discussions of modeling principles, flows and granular media, and fluctuations around averages.
This volume fills the need for a textbook presenting basic governing and constitutive equations, followed by several engineering problems on multiphase flow and transport that are not provided in current advanced texts, monographs, or handbooks. The unique emphasis of this book is on the sound formulation of the basic equations describing multiphase transport and how they can be used to design processes in selected industrially important fields. The clear underlying mathematical and physical bases of the interdisciplinary description of multiphase flow and transport are the main themes, along with advances in the kinetic theory for particle flow systems. The book may be used as an upper-level undergraduate or graduate textbook, as a reference by professionals in the design of processes that deal with a variety of multiphase systems, and by practitioners and experts in multiphase science in the area of computational fluid dynamics (CFD) at U.S. national laboratories, international universities, research laboratories and institutions, and in the chemical, pharmaceutical, and petroleum industries. Distinct from other books on multiphase flow, this volume shows clearly how the basic multiphase equations can be used in the design and scale-up of multiphase processes. The authors represent a combination of nearly two centuries of experience and innovative application of multiphase transport representing hundreds of publications and several books. This book serves to encapsulate the essence of their wisdom and insight, and:
"Variable density flows occur in many natural and engineering systems, such as the evolution of molecular clouds in the interstellar medium, the ablation of deuteriumtritium targets in inertial confinement fusion experiments, and the fuel-oxygen mixing in a combustion engine. Variable density flow encompasses all flows with significant density variation, including compressible flows and multi-species incompressible flows. Complex flows with variable density can develop a wide range of spatial and temporal scales with substantial interactions between different scales. The study of these interactions is crucial for the physical understanding, modeling, prediction, and control of these complex flows. Various methods have been proposed to disentangle scales in variable density flows and quantify the scale-to-scale energy transfer, which has yielded differing and inconsistent pictures of the energy pathways across scales. Thus, the first part of the thesis focuses on assessing the different scale decomposition approaches in variable density flows, and identifying the physically correct method to unravel scale interactions. Single-mode and multi-mode Rayleigh-Taylor (RT) flows, which constitute an important class of variable density flows, are studied using our method in the second part of the thesis. We focus on the physical mechanisms of energy scale transfer. We study a new mechanism for energy transfer, originating from the pressure gradient and subscale mass flux, which is specific to variable density flows. We show how this mechanism is responsible for the creation of vorticity and strain at small scales. Numerical evidence for this connection is conducted in single-mode RT flows along Lagrangian particle trajectories. We also investigate the other energy pathways and the existence of an inertial range in turbulent RT flows using our approach. Properties of kinetic energy flux and anisotropy in RT flows are analyzed in detail. In the final part of the thesis, a definition of 'optimal' subgrid scale (SGS) kinetic energy flux in incompressible flows is proposed. Compared to the conventional SGS flux, the new definition reduces the variance and intermittency while maintaining the mean spatial value. A direct link between this 'optimal flux' and Kolmogorov's 4/5 law can be established. Comparison between the optimal flux and the conventional SGS flux is performed with 2D and 3D incompressible turbulence data, as well as channel flow data in 3D."--Pages x-xi.