Download Free Mass Transfer With Chemical Reaction In Multiphase Systems Book in PDF and EPUB Free Download. You can read online Mass Transfer With Chemical Reaction In Multiphase Systems and write the review.

The phenomenon of "mass transfer with chemical reaction" takes place whenever one phase is brought into contact with one or more other phases not in chemical equilibrium with it. This phenomenon has industrial, biological and physiological importance. In chemical process engineering, it is encountered in both separ ation processes and reaction engineering. In some cases, a chemical reaction may deliberately be employed for speeding up the rate of mass transfer and/or for increasing the capacity of the solvent; in other cases the multiphase reaction system is a part of the process with the specific aim of product formation. Finally, in some cases, for instance "distillation with chemical reaction", both objectives are involved. Although the subject is clearly a chemical engineering undertakin~, it requires often a good understanding of other subjects, such as chemistry and fluid mechanics etc., leading to publications in diversified areas. On the other har.d, the subject has always been a major field and one of the most fruitful for chemical engineers.
The phenomenon of "mass transfer with chemical reaction" takes place whenever one phase is brought into contact with one or more other phases not in chemical equilibrium with it. This phenomenon has industrial, biological and physiological importance. In chemical process engineering, it is encountered in both separ ation processes and reaction engineering. In some cases, a chemical reaction may deliberately be employed for speeding up the rate of mass transfer and/or for increasing the capacity of the solvent; in other cases the multiphase reaction system is a part of the process with the specific aim of product formation. Finally, in some cases, for instance "distillation with chemical reaction," both objectives are involved. Although the subject is clearly a chemical engineering undertakin, it requires often a good understanding of other subjects, such as chemistry and fluid mechanics etc., leading to publications in diversified areas. On the other har.d, the subject has always been a major field and one of the most fruitful for chemical engineers."
The phenomenon of "mass transfer with chemical reaction" takes place whenever one phase is brought into contact with one or more other phases not in chemical equilibrium with it. This phenomenon has industrial, biological and physiological importance. In chemical process engineering, it is encountered in both separ ation processes and reaction engineering. In some cases, a chemical reaction may deliberately be employed for speeding up the rate of mass transfer and/or for increasing the capacity of the solvent; in other cases the multiphase reaction system is a part of the process with the specific aim of product formation. Finally, in some cases, for instance "distillation with chemical reaction," both objectives are involved. Although the subject is clearly a chemical engineering undertakin, it requires often a good understanding of other subjects, such as chemistry and fluid mechanics etc., leading to publications in diversified areas. On the other har.d, the subject has always been a major field and one of the most fruitful for chemical engineers."
Details simple design methods for multiphase reactors in the chemical process industries Includes basic aspects of transport in multiphase reactors and the importance of relatively reliable and simple procedures for predicting mass transfer parameters Details of design and scale up aspects of several important types of multiphase reactors Examples illustrated through design methodologies presenting different reactors for reactions that are industrially important Includes simple spreadsheet packages rather than complex algorithms / programs or computational aid
Chemical Reactor Modeling closes the gap between Chemical Reaction Engineering and Fluid Mechanics. The second edition consists of two volumes: Volume 1: Fundamentals. Volume 2: Chemical Engineering Applications In volume 1 most of the fundamental theory is presented. A few numerical model simulation application examples are given to elucidate the link between theory and applications. In volume 2 the chemical reactor equipment to be modeled are described. Several engineering models are introduced and discussed. A survey of the frequently used numerical methods, algorithms and schemes is provided. A few practical engineering applications of the modeling tools are presented and discussed. The working principles of several experimental techniques employed in order to get data for model validation are outlined. The monograph is based on lectures regularly taught in the fourth and fifth years graduate courses in transport phenomena and chemical reactor modeling and in a post graduate course in modern reactor modeling at the Norwegian University of Science and Technology, Department of Chemical Engineering, Trondheim, Norway. The objective of the book is to present the fundamentals of the single-fluid and multi-fluid models for the analysis of single and multiphase reactive flows in chemical reactors with a chemical reactor engineering rather than mathematical bias. Organized into 13 chapters, it combines theoretical aspects and practical applications and covers some of the recent research in several areas of chemical reactor engineering. This book contains a survey of the modern literature in the field of chemical reactor modeling.
This book covers a wide variety of topics related to advancements in different stages of mass transfer modelling processes. Its purpose is to create a platform for the exchange of recent observations, experiences, and achievements. It is recommended for those in the chemical, biotechnological, pharmaceutical, and nanotechnology industries as well as for students of natural sciences, technical, environmental and employees in companies which manufacture machines for the above-mentioned industries. This work can also be a useful source for researchers and engineers dealing with mass transfer and related issues.
Rapidly increasing interest in the problems of air pollution and source-receptor relationships has led to a significant expansion of knowledge in the field of atmospheric chemistry. In general the chemistry of atmospheric trace constituents is governed by the oxygen content of the atmosphere. Upon entering the atmosphere in a more or less reduced state, trace substances are oxidized via various pathways and the generated products are often precursors of acidic compounds. Beside oxidation processes occurring in the gas phase, gaseous compounds are often converted into solid aerosol particles. The various steps within gas-to-particle conversion are constantly interacting with condensation processes, which are caused by the tropospheric water content. Thus in addition to the gaseous state, a liquid and solid state exists within the troposphere. The solid phase consists of atmospheric conversion products or fly ash and mineral dust. The liquid phase consists of water, conversion products and soluble compounds. The chemistry occurring within this system is often referred to as hydrogeneous chemistry. The chemist interprets this term, however, more strictly as reactions which occur only at an interphase between phases. This, however, is not always what happens in the atmosphere. There are indeed heterogeneous processes such as reactions occurring on the surface of dry aerosol particles. But apart from these, we must focus as well on reactions in the homogeneous phase, which are single steps of consecutive reactions running through various phases.
Numerical simulation of multiphase reactors with continuous liquid phase provides current research and findings in multiphase problems, which will assist researchers and engineers to advance this field. This is an ideal reference book for readers who are interested in design and scale-up of multiphase reactors and crystallizers, and using mathematical model and numerical simulation as tools. Yang and Mao's book focuses on modeling and numerical applications directly in the chemical, petrochemical, and hydrometallurgical industries, rather than theories of multiphase flow. The content will help you to solve reacting flow problems and/or system design/optimization problems. The fundamentals and principles of flow and mass transfer in multiphase reactors with continuous liquid phase are covered, which will aid the reader's understanding of multiphase reaction engineering. Provides practical applications for using multiphase stirred tanks, reactors, and microreactors, with detailed explanation of investigation methods. Presents the most recent research efforts in this highly active field on multiphase reactors and crystallizers. Covers mathematical models, numerical methods and experimental techniques for multiphase flow and mass transfer in reactors and crystallizers.