Download Free Mass Spectrometry Of Nucleosides And Nucleic Acids Book in PDF and EPUB Free Download. You can read online Mass Spectrometry Of Nucleosides And Nucleic Acids and write the review.

Assembling the work of an international panel of researchers, Mass Spectrometry of Nucleosides and Nucleic Acids summarizes and reviews the latest developments in the field and provides a window on the next generation of analysis. Beginning with an overview of recent developments, the book highlights the most popular ionization methods and illustra
There is growing enthusiasm in the scientific community about the prospect of mapping and sequencing the human genome, a monumental project that will have far-reaching consequences for medicine, biology, technology, and other fields. But how will such an effort be organized and funded? How will we develop the new technologies that are needed? What new legal, social, and ethical questions will be raised? Mapping and Sequencing the Human Genome is a blueprint for this proposed project. The authors offer a highly readable explanation of the technical aspects of genetic mapping and sequencing, and they recommend specific interim and long-range research goals, organizational strategies, and funding levels. They also outline some of the legal and social questions that might arise and urge their early consideration by policymakers.
Assembling the work of an international panel of researchers, Mass Spectrometry of Nucleosides and Nucleic Acids summarizes and reviews the latest developments in the field and provides a window on the next generation of analysis. Beginning with an overview of recent developments, the book highlights the most popular ionization methods and illustrates the diversity of strategies employed in the characterization and sequencing of DNA and RNA oligomers, nucleosides, nucleotides, and adducts. It describes studies performed on deoxyinosine and its analogues and provides an introduction to tandem mass spectrometry (MS/MS). Next, the contributors examine mass spectrometric application in the study of cyclic nucleotides in biochemical signal transduction. They analyze urinary modified nucleosides and explore DNA adducts. They discuss isotope labeling of DNA-mass spectrometry (ILD-MS) and examine various uses of electrospray ionization mass spectrometry (ESI-MS). The book reviews recent progress in the direct MS characterization of noncovalent nucleic acid-protein complexes, explores the interaction and ionization of guanidine-derived compounds with highly acidic biomolecules, and examines quantitative identification of nucleic acids via signature digestion products detected using mass spectrometry. The book describes a direct-infusion ESI-MS approach that can serve as a screening technique for the presence of modified nucleosides from small RNAs. Lastly, it discusses the LC-MS/MS method for the in vitro replication studies on damage-containing DNA substrates, and concludes with an examination of the influence of metal ions on the structure and reactivity of nucleic acids. The exciting developments in mass spectrometry technology have fueled incredible advances in our understanding of nucleic acids and their complexes. The contributions presented in this volume capture the range of these advances, helping to inspire new findings and avenues of research.
Photochemistry and Photobiology of Nucleic Acids, Volume I: Chemistry covers the historical developments in the study of photobiology and photochemistry of nucleic acid components. This volume is divided into 12 chapters that deal with the isolation and characterization of ultraviolet photoproducts of pyrimidines. After briefly covering the concepts of photochemistry of nucleic acids, this volume goes on describing the UV-induced physical and chemical alterations in nucleic acid components, such as pyrimidines, purines, their nucleosides and nucleotides, and related compounds. Significant chap ...
This book spans diverse aspects of modified nucleic acids, from chemical synthesis and spectroscopy to in vivo applications, and highlights studies on chemical modifications of the backbone and nucleobases. Topics discussed include fluorescent pyrimidine and purine analogs, enzymatic approaches to the preparation of modified nucleic acids, emission and electron paramagnetic resonance (EPR) spectroscopy for studying nucleic acid structure and dynamics, non-covalent binding of low- and high-MW ligands to nucleic acids and the design of unnatural base pairs. This unique book addresses new developments and is designed for graduate level and professional research purposes.
Many fundamental aspects of the methods used in mass spectrometry are here presented by outstanding scientists, with reference to very recent developments. The principles and applications of electrospray, ion spray and MALDI ionization technique are presented, together with optimised GC/MS interfacing systems and tools for quantitative analysis. A comprehensive treatment of modern instrumentation for mass analysis and detection is also included. The major part of the book deals with bioanalytical applications to peptides, proteins, oligonucleotides, polysaccharides, lipids and plant metabolites. Several papers are devoted to the evaluation of adduct formation between DNA and carcinogens. Environmental applications are also included, with examples of some specific cases. Fundamentals and applications are treated with the same degree of depth: the first two parts of the book therefore provide a basis for the understanding of the biomolecular applications section. Audience: Ideal for advanced graduate students of chemistry who have learned some basic mass spectrometry. Also useful for Ph.D. students in chemistry, biology and medicine. Of value to researchers in academic and industrial laboratories.
Based on presentations made at a workshop on Continuous Flow Fast Atom Bombardment held in Annapolis, Maryland, in November, 1989. Expanded and edited, the papers presented at the workshop form a compact volume reflecting recent advances in a number of key areas in the field of continuous flow fast atom bombardment mass spectrometry. Topics cover non-aqueous applications, biological process monitoring, trace analysis, and design and operational conditions.
Basic Principles in Nucleic Acid Chemistry, Volume I provides information pertinent to the fundamental aspects of nucleic acids. This book discusses the development of the basic principles in nucleic acid research that will serve as a foundation for further advancement in nucleic acid research. Organized into six chapters, this volume begins with an overview of the history of the scientific study of nucleic acid as a genetic material. This text then examines the utility of the analogs of the naturally occurring nucleic acid components as biochemical tools and as therapeutic agents. Other chapters consider mass spectrometry that deals with the production and chemistry of ions in the vapor phase. This book discusses as well the various aspects of the excited states of the nucleic acids. The final chapter deals with the systematic study of the physiochemical properties of the monomeric units of nucleic acid. This book is a valuable resource for molecular biologists, scientists, and research workers.
The volumes of this classic series, now referred to simply as "Zechmeister" after its founder, L. Zechmeister, have appeared under the Springer Imprint ever since the series' inauguration in 1938. It is therefore not really surprising to find out that the list of contributing authors, who were awarded a Nobel Prize, is quite long: Kurt Alder, Derek H.R. Barton, George Wells Beadle, Dorothy Crowfoot-Hodgkin, Otto Diels, Hans von Euler-Chelpin, Paul Karrer, Luis Federico Leloir, Linus Pauling, Vladimir Prelog, with Walter Norman Haworth and Adolf F.J. Butenandt serving as members of the editorial board. The volumes contain contributions on various topics related to the origin, distribution, chemistry, synthesis, biochemistry, function or use of various classes of naturally occurring substances ranging from small molecules to biopolymers. Each contribution is written by a recognized authority in his field and provides a comprehensive and up-to-date review of the topic in question. Addressed to biologists, technologists and chemists alike, the series can be used by the expert as a source of information and literature citations and by the non-expert as a means of orientation in a rapidly developing discipline.
Mass Spectrometry in the Biological Sciences covers the most recent technological and applied developments in the area, including both ionization techniques and ion analysis. It introduces and reviews some of the newer ionization methods, describes the major instrumentation involved in mass analysis, and presents the scope of the technology in biology, medicine, and environmental science. Specific examples are given for a number of topics. It also deals with recent achievements in the on-line combination of separation techniques such as gas chromatography, liquid chromatography, and supercritical fluid technology.