Download Free Mass Spectrometry Of Natural Substances In Food Book in PDF and EPUB Free Download. You can read online Mass Spectrometry Of Natural Substances In Food and write the review.

Introducing the principles, practice and applications of mass spectrometric techniques in the study of natural substances in foods, this book conveys the depth and breadth of modern mass spectrometry in relation to food analysis. It covers traditional techniques such as electron and chemical ionisation and newer soft ionisation techniques such as matrix-assisted laser desorption ionisation and electrospray. All of these techniques are especially relevant in food quality and safety studies and in biopolymer analysis. The ability to analyse biopolymers by mass spectrometry is having a major impact on the study of food structure components, food proteins, food pathogens and food components produced from genetically modified organisms. The principles and practice of mass spectrometry are covered in the early chapters and are followed by applications in flavour analysis and the determination of non-nutrient, biologically-active, natural substances in foods. The analysis and metabolic studies of amino acids, peptides, proteins, lipids, sugars, carbohydrates and vitamins is also discussed, with separate chapters on mineral and micronutrient metabolism and techniques of pyrolysis mass spectrometry. Mass Spectrometry of Natural Substances in Food will be a valuable resource for food scientists, food analysts and others working in food research, nutrition and safety.
Introduces the principles, practice, and application of mass spectrometric techniques in the study of natural substances in foods. Early chapters address the principles and practice of mass spectrometry, followed by applications in flavor analysis and the determination of non-nutrient, biologically-active, natural substances in foods. Also covered is the analysis and metabolic study of amino acids, peptides, proteins, lipids, sugars, carbohydrates, and vitamins, with separate chapters on mineral and micronutrient metabolism and techniques of pyrolysis mass spectrometry. Annotation copyrighted by Book News, Inc., Portland, OR
Given the continuous consumer demand for products of high quality and specific origin, there is a great tendency toward the application of multiple instrumental techniques for the complete characterization of foodstuffs or related natural products. Spectrometric techniques usually offer a full and rapid screenshot of a product’s composition and properties by the determination of specific biomolecules such as sugars, minerals, polyphenols, volatile compounds, amino acids, and organic acids. The present Special Issue aimed firstly to enhance the advances of the application of spectrometric techniques such as gas chromatography coupled to mass spectrometry (GC-MS), inductively coupled plasma optical emission spectrometry (ICP-OES), isotope-ratio mass spectrometry (IRMS), nuclear magnetic resonance (NMR), Raman spectroscopy, or any other spectrometric technique, in the analysis of foodstuffs such as meat, milk, cheese, potatoes, vegetables, fruits/fruit juices, honey, olive oil, chocolate, and other natural products. An additional goal was to fill the gap between food composition/food properties/natural product properties and food/natural product authenticity, using supervised and nonsupervised chemometrics.
The quality and safety of food are crucial for human nutrition. However, evaluating the chemical composition of food is challenging for the analyst and requires powerful methods. Chromatography and mass spectrometry (MS) is the gold standard for analyzing complex food samples, including raw materials and intermediate and finished products. Mass Spectrometry in Food Analysis covers the MS-based analysis of different aspects of food quality, which include nutritional value, profile of macronutrients (proteins, lipids, and carbohydrates), micronutrients (vitamins), and nutraceutical active compounds. Additionally, sensory quality, flavor, food pigments, safety, and detection of pesticides, contact materials, veterinary drugs and pharmaceuticals, organic pollutants, and pathogens are covered. Key Features: Contains the basics of mass spectrometry and experimental strategies Explores determination of macro- and micronutrients Analyzes sensory and nutraceutical food quality Discusses detection of contaminants and proof of authenticity Presents emerging methods for food analysis This book contains an introductory section that explains the basics of MS and the difference between targeted and untargeted strategies for beginners. Further, it points out new analytical challenges, such as monitoring contaminants of emerging concern, and presents innovative techniques (e.g., ambient ionization MS and data mining). Also available in the Food Analysis & Properties Series: Nanoemulsions in Food Technology: Development, Characterization, and Applications, edited by Javed Ahmad and Leo M.L. Nollet (ISBN: 978-0-367-61492-8) Sequencing Technologies in Microbial Food Safety and Quality, edited by Devarajan Thangadurai, Leo M.L. Nollet, Saher Islam, and Jeyabalan Sangeetha (ISBN: 978-0-367-35118-2) Chiral Organic Pollutants: Monitoring and Characterization in Food and the Environment, edited by Edmond Sanganyado, Basil K. Munjanja, and Leo M.L. Nollet (ISBN: 978-0-367-42923-2) For a complete list of books in this series, please visit our website at: www.crcpress.com/Food-Analysis--Properties/book-series/CRCFOODANPRO
Provides the latest "-omics" tools to advance the study of food and nutrition The rapidly emerging field of foodomics examines food and nutrition by applying advanced "-omics" technologies in order to improve people's health, well-being, and knowledge. Using tools from genomics, transcriptomics, epigenomics, proteomics, and metabolomics, foodomics offers researchers new analytical approaches to solve a myriad of current challenges in food and nutrition science. This book presents the fundamentals of foodomics, exploring the use of advanced mass spectrometry techniques in food science and nutrition in the post-genomic era. The first chapter of the book offers an overview of foodomics principles and applications. Next, the book covers: Modern instruments and methods of proteomics, including the study and characterization of food quality, antioxidant food supplements, and food allergens Advanced mass spectrometry-based methods to study transgenic foods and the microbial metabolome Mass spectrometry-based metabolomics in nutrition and health research Foodomics' impact on our current understanding of micronutrients (phenolic compounds and folates), optimal nutrition, and personalized nutrition and diet related diseases Principles and practices of lipidomics and green foodomics Use of chemometrics in mass spectrometry and foodomics The final chapter of Foodomics explores the potential of systems biology approaches in food and nutrition research. All the chapters conclude with references to the primary literature, enabling readers to explore individual topics in greater depth. With contributions from a team of leading pioneers in foodomics, this book enables students and professionals in food science and nutrition to take advantage of the latest tools to advance their research and open up new areas of food and nutrition investigation.
Mass spectrometry has developed into a platform for the assessment of health, sensory, quality and safety aspects of food. Current nutrition research focuses on unravelling the link between acute or chronic dietary and nutrient intake and the physiological effects at cellular, tissue and whole body level. The bioavailability and bioefficacy of food constituents and dose-effect correlations are key to understanding the impact of food on defined health outcomes. To generate this information, appropriate analytical tools are required to identify and quantify minute amounts of individual compounds in highly complex matrices (such as food or biological fluids) and to monitor molecular changes in the body in a highly specific and sensitive manner. Mass spectrometry has become the method of choice for such work and now has broad applications throughout all areas of nutrition research. This book focuses the contribution of mass spectrometry to the advancement of nutrition research. Aimed at students, teachers and researchers, it provides a link between nutrition and analytical biochemistry. It guides nutritionists to the appropriate techniques for their work and introduces analytical biochemists to new fields of application in nutrition and health. The first part of the book is dedicated to the assessment of macro- and micro-nutrient status with a view to making dietary recommendations for the treatment of diet-related diseases. The second part shows how mass spectrometry has changed nutrition research in fields like energy metabolism, body composition, protein turnover, immune modulation and cardiovascular health.
This Special Issue is dedicated to gathering the latest advances in the food sources, chemistry, analysis, composition, formulation, use, experience in clinical use, mechanisms of action, available data of nutraceuticals, and natural sources that represent a new frontier for therapy and provide valuable tools to reduce the costs for both environment and healthcare systems.
The application of analytical chemistry to the food sector allows the determination of the chemical composition of foods and the properties of their constituents, contributing to the definition of their nutritional and commodity value. Furthermore, it is possible to study the chemical modifications that food constituents undergo as a result of the treatments they undergo (food technology). Food analysis, therefore, allows us not only to determine the quality of a product or its nutritional value, but also to reveal adulterations and identify the presence of xenobiotic substances potentially harmful to human health. Furthermore, some foods, especially those of plant origin, contain numerous substances with beneficial effects on health. While these functional compounds can be obtained from a correct diet, they can also be extracted from food matrices for the formulation of nutraceutical products or added to foods by technological or biotechnological means for the production of functional foods. On the other hand, the enormous growth of the food industry over the last 50 years has broadened the field of application of analytical chemistry to encompass not only food but also food technology, which is fundamental for increasing the production of all types of food.
This book highlights analytical chemistry instrumentation and practices applied to the analysis of natural products and their complex mixtures, describing techniques for isolating and characterizing natural products. • Applies analytical techniques to natural products research – an area of critical importance to drug discovery • Offers a one-stop shop for most analytical methods: x-ray diffraction, NMR analysis, mass spectrometry, and chemical genetics • Includes coverage of natural products basics and highlights antibacterial research, particularly important as efforts to combat drug resistance gain prominence • Covers instrumental techniques with enough detail for both current practitioners and beginning researchers
During the last two decades, the use of NMR spectroscopy for the characterization and analysis of food materials has flourished, and this trend continues to increase today. Currently, there exists no book that fulfils specifically the needs of food scientists that are interested in adding or expanding the use of NMR spectroscopy in their arsenal of food analysis techniques. Current books and monographs are rather addressed to experienced researchers in food analysis providing new information in the field. This book, written by acknowledged experts in the field, fills the gap by offering a day to day NMR guide for the food scientist, affording not only the basic theoretical aspects of NMR spectroscopy, but also practical information on sample preparation, experimental conditions and data analysis. Current developments in the field covered in this book are the availability of solid state NMR experiments such as CP/MAS and more importantly HR-MAS NMR for the analysis of semisolid foods, and the increasing use of chemometrics to analyze NMR data in food metabonomics. Moreover, this book contains an up to date discussion of MRI in food analysis including topics such as food processing and natural changes in food such as ripening. The book is a compact and complete source of information for food scientists who wish to apply methodologies based on NMR spectroscopy in food analysis. It contains information so far scattered in the primary literature, in NMR treatises and food analysis books, in a concise format that makes it appealing to food scientists who have no or minimal experience in magnetic resonance techniques. The inclusion of practical information about NMR instrumentation, experiment setup, acquisition and spectral analysis for the study of different food categories make this book a hands-on manual for food scientists wishing to implement novel NMR spectroscopy-based analytical techniques in their field.