Download Free Mass Spectrometry Imaging With High Resolution In Mass And Space Book in PDF and EPUB Free Download. You can read online Mass Spectrometry Imaging With High Resolution In Mass And Space and write the review.

Addressing the widespread need for a practical guide to imaging mass spectrometry (IMS), this book presents the protocols of IMS technology. As that technology expands, research groups around the world continue its development. Pharmaceutical companies are using IMS for drug analyses to study pharmacokinetics and medical properties of drugs. Drug research and disease-related biomarker screening are experiencing greater use of this technology, with a concurrent increase in the number of researchers in academia and industry interested in wider applications of IMS. Intended for beginners or those with limited experience with IMS technology, this book provides practical details and instructions needed for immediate know-how, including the preparation of animal tissue samples, the application of a matrix, instrumental operations, and data analysis, among others. By describing the foundations of IMS, this volume contributes to the ongoing development of the field and to progress in human health.
This book gathers knowledge about matrix-assisted laser desorption ionisation (MALDI) mass spectrometry imaging for postgraduate and professional researchers in academia and in industry where it has direct application to clinical research.
This second edition details new and updated chapters on key methodologies and breakthroughs in the mass spectrometry imaging (MSI) field. Chapters guide readers through nano-Desorption Electrospray Ionisation (nDESI), Matrix Assisted Laser Desorption Ionisation-2 (MALDI-2), Laser Ablation - Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) ,Imaging Mass Cytometry (IMC) with a variety of diverse samples including eye tissue, crop analysis, 3D cell culture models, and counterfeit goods analysis. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials and reagents, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols. Authoritative and cutting-edge, Imaging Mass Spectrometry: Methods and Protocols, Second Edition aims to be a useful and practical guide to new researchers and experts looking to expand their knowledge.
Food contains various compounds and many technologies exist to analyze those molecules of interest. However, the analysis of the spatial distribution of those compounds using conventional technology, such as liquid chromatography-mass spectrometry or gas chromatography-mass spectrometry is difficult. Mass spectrometry imaging (MSI) is a mass spectrometry technique to visualize the spatial distribution of molecules, as biomarkers, metabolites, peptides or proteins by their molecular masses. Despite the fact that MSI has been generally considered a qualitative method, the signal generated by this technique is proportional to the relative abundance of the analyte and so quantification is possible. Mass Spectrometry Imaging in Food Analysis, a volume in the Food Analysis and Properties Series, explains how the novel use of matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) will be an ideal complementary approach. MALDI-MSI is a two-dimensional MALDI-MS technology that can detect compounds in a tissue section without extraction, purification, separation, or labeling. It can be used to visualize the spatial distribution of biomolecules in foods. Features: Explains the novel use of matrix-assisted laser desorption/ionization mass spectrometry imaging in food analysis Describes how MALDI-MSI will be a useful technique for optical quality assurance. Shows how MALDI-MSI detects food contaminants and residues Covers the historical development of the technology While there are a multitude of books on mass spectrometry, none focus on food applications and thus this book is ideally suited to food scientists, food industry personnel engaged in product development, research institutions, and universities active in food analysis or chemical analysis. Also available in the Food Analysis and Properties Series: Food Aroma Evolution: During Food Processing, Cooking, and Aging, edited by Matteo Bordiga and Leo M.L. Nollet (ISBN: 9781138338241) Ambient Mass Spectroscopy Techniques in Food and the Environment, edited by Leo M.L. Nollet and Basil K. Munjanja (ISBN: 9781138505568) Hyperspectral Imaging Analysis and Applications for Food Quality, edited by N.C. Basantia, Leo M.L. Nollet, and Mohammed Kamruzzaman (ISBN: 9781138630796) For a complete list of books in this series, please visit our website at: www.crcpress.com/Food-Analysis--Properties/book-series/CRCFOODANPRO
"This informative book offers a wide range of knowledge on the technologies and applications of the cutting-edge field of high-resolution mass spectrometry (HRMS) in different areas of analysis. HRMS has changed the nature of experimentation and investigation in so many analytical realms. Determining exact mass determination, high resolution, and specificity-via the special features provided by HRMS instruments-is now possible for determining the composition of the analyte of interest, both qualitatively and quantitatively. High-Resolution Mass Spectrometry and Its Diverse Applications: Cutting-Edge Techniques and Instrumentation begins with an overview of the basic instrumentation techniques and goes on to present research on diverse new uses of HRMS in clinical testing, such as for therapeutic drug designing, discovery, and development; in forensic studies and investigations; in quality management systems; for analysis of pesticides; for analysis of single cells; in analysis of fossil fuels; for use in space and planetary science; and more. Chapters relay how HRMS plays an important role in the structure elucidation and unknown determination in many fields and is a great measure to be used for quantitative analyses. The book considers how these properties make the technique a strong aid in many areas. This volume highlights how HRMS can be a useful tool for scientists and researchers, faculty and students, and industry professionals in many scientific areas of study"--
This book gathers, in a single resource, knowledge about matrix-assisted laser desorption ionisation (MALDI) mass spectrometry imaging. It includes fundamentals in the MALDI ionisation process, different source geometries and capabilities, detection systems and the latest research and applications in the range of –omics area as well as other broader areas. Chapters will touch on dedicated sample preparation protocols specific for the class of compounds of interest, instrumentation used with strengths and current limitations, strategies for structural analysis and identification and applications. It will be a welcomed addition to the literature in this fast-moving field and provide a guide to new innovations and applications especially in metabolomics and proteomics. With contributions from leading experts, this book will be an authoritative guide to this method. Aimed at postgraduate and professional researchers, in academia and in the industrial market where it has direct application to clinical research. It will be a supporting volume for those just entering the field as well as experienced practitioners.
Applications of Mass Spectrometry Imaging to Cancer, the latest volume in the Advances in Cancer Research provides invaluable information on the exciting and fast-moving field of cancer research. This volume presents original reviews on applications of mass spectrometry imaging to cancer. Provides information on cancer research Offers outstanding and original reviews on a range of cancer research topics Serves as an indispensable reference for researchers and students alike
A powerful enhancement to MS-based detection is the addition of spatial information to the chemical data; an approach called mass spectrometry imaging (MSI). MSI enables two- and three-dimensional overviews of hundreds of molecular species over a wide mass range in complex biological samples. In this work, we present two computational methods and a workflow that address three different aspects of MSI data analysis: correction of mass shifts, unsupervised exploration of the data and importance of preprocessing and chemometrics to extract meaningful information from the data. We introduce a new lock mass-free recalibration procedure that enables to significantly reduce these mass shift effects in MSI data. Our method exploits similarities amongst peaklist pairs and takes advantage of the spatial context in three different ways, to perform mass correction in an iterative manner. As an extension of this work, we also present a Java-based tool, MSICorrect, that implements our recalibration approach and also allows data visualization. In the next part, an unsupervised approach to rank ion intensity maps based on the abundance of their spatial pattern is presented. Our method provides a score to every ion intensity map based on the abundance of spatial pattern present in it and then ranks all the maps using it. To know which masses exhibit similar spatial distribution, our method uses spatial-similarity based grouping to provide lists of masses that exhibit similar distribution patterns. In the last part, we demonstrate the application of a data preprocessing and multivariate analysis pipeline to a real-world biological dataset. We demonstrate this by applying the full pipeline to a high-resolution MSI dataset acquired from the leaf surface of Black cottonwood (Populus trichocarpa). Application of the pipeline helped in highlighting and visualizing the chemical specificity on the leaf surface.
Imaging mass spectrometry (MS) techniques are often utilized without an understanding of their underlying principles, making it difficult for scientists to determine when and how they can exploit MS to visualize their biomolecules of interest. Introduction to Spatial Mapping of Biomolecules by Imaging Mass Spectrometry is an essential reference to help scientists determine the status and strategies of biomolecule analysis, describing its many applications for diverse classes of biomolecules. The book builds a foundation of imaging MS knowledge by introducing ionization sources, sample preparation, visualization guidelines, molecule identification, quantification, data analysis, etc. The second section contains chapters focused on case studies on analyzing a biomolecule class of molecules. Case studies include an introduction/background, and a summary of successful imaging MS studies with illustrative figures and future directions. Provides the introductory foundations of imaging mass spectrometry for those new to the technique Organized by topic to facilitate a quick deep dive, allowing researchers to immediately apply the imaging MS techniques to their work Includes case studies summarizing the imaging MS techniques developed for the class of molecules