Download Free Mass And Energy Balances Book in PDF and EPUB Free Download. You can read online Mass And Energy Balances and write the review.

This textbook introduces students to mass and energy balances and focuses on basic principles for calculation, design, and optimization as they are applied in industrial processes and equipment. While written primarily for undergraduate programs in chemical, energy, mechanical, and environmental engineering, the book can also be used as a reference by technical staff and design engineers interested who are in, and/or need to have basic knowledge of process engineering calculation. Concepts and techniques presented in this volume are highly relevant within many industrial sectors including manufacturing, oil/gas, green and sustainable energy, and power plant design. Drawing on 15 years of teaching experiences, and with a clear understanding of students' interests, the authors have adopted a very accessible writing style that includes many examples and additional citations to research resources from the literature, referenced at the ends of chapters.
This text takes a practical approach to its presentation of stoichiometry and energy-balance principles for materials engineering students by emphasizing their use in actual engineering practice.
This best selling text prepares students to formulate and solve material and energy balances in chemical process systems and lays the foundation for subsequent courses in chemical engineering. The text provides a realistic, informative, and positive introduction to the practice of chemical engineering. The Integrated Media Edition update provides a stronger link between the text, media supplements, and new student workbook.
This long awaited second edition of a popular textbook has a simple and direct approach to the diversity and complexity of food processing. It explains the principles of operations and illustrates them by individual processes. The new edition has been enlarged to include sections on freezing, drying, psychrometry, and a completely new section on mechanical refrigeration. All the units have been converted to SI measure. Each chapter contains unworked examples to help the student gain a grasp of the subject, and although primarily intended for the student food technologist or process engineer, this book will also be useful to technical workers in the food industry
Urban Climates is the first full synthesis of modern scientific and applied research on urban climates. The book begins with an outline of what constitutes an urban ecosystem. It develops a comprehensive terminology for the subject using scale and surface classification as key constructs. It explains the physical principles governing the creation of distinct urban climates, such as airflow around buildings, the heat island, precipitation modification and air pollution, and it then illustrates how this knowledge can be applied to moderate the undesirable consequences of urban development and help create more sustainable and resilient cities. With urban climate science now a fully-fledged field, this timely book fulfills the need to bring together the disparate parts of climate research on cities into a coherent framework. It is an ideal resource for students and researchers in fields such as climatology, urban hydrology, air quality, environmental engineering and urban design.
There has been an exponential increase in desalination capacity both globally and nationally since 1960, fueled in part by growing concern for local water scarcity and made possible to a great extent by a major federal investment for desalination research and development. Traditional sources of supply are increasingly expensive, unavailable, or controversial, but desalination technology offers the potential to substantially reduce water scarcity by converting the almost inexhaustible supply of seawater and the apparently vast quantities of brackish groundwater into new sources of freshwater. Desalination assesses the state of the art in relevant desalination technologies, and factors such as cost and implementation challenges. It also describes reasonable long-term goals for advancing desalination technology, posits recommendations for action and research, estimates the funding necessary to support the proposed research agenda, and identifies appropriate roles for governmental and nongovernmental entities.
A thorough introduction to balance equation concepts. Geared for the course offered to chemical engineering majors in their sophomore year. Develops a framework for the analysis of flowsheet problem information with extensive use of degree-of-freedom analysis. Presents systematic approaches for manual and computer-aided solution of full scale balance problems. Provides a detailed development of the structure, properties, and interrelationships of species and element balances based on the algebraic view of reaction-stoichiometry and the rate of reaction concept.
Material and energy (M&E) balances are fundamental to chemical (process) engineering, environmental engineering and industrial chemistry. This text presents M&E balance calculations in a compact, transparent format accessible to students and professionals in the above fields, and to others who want to quantify the physical progress of our civilization. The text embraces all topics covered in corresponding engineering undergraduate courses and deals with environmental and sustainability issues of current concern to society. The general balance equation is the foundation for a review of relevant science and economics, and hence, for material and energy accounting in batch and continuous chemical processes. The text focuses on SI units, using flowsheets and stream tables in computer spreadsheets to represent practical systems. Worked examples range from simple stoichiometry to modeling multi-unit recycle and unsteady-state processes.