Download Free Martingale Hardy Spaces And Their Applications In Fourier Analysis Book in PDF and EPUB Free Download. You can read online Martingale Hardy Spaces And Their Applications In Fourier Analysis and write the review.

This book deals with the theory of one- and two-parameter martingale Hardy spaces and their use in Fourier analysis, and gives a summary of the latest results in this field. A method that can be applied for both one- and two-parameter cases, the so-called atomic decomposition method, is improved and provides a new and common construction of the theory of one- and two-parameter martingale Hardy spaces. A new proof of Carleson's convergence result using martingale methods for Fourier series is given with martingale methods. The book is accessible to readers familiar with the fundamentals of probability theory and analysis. It is intended for researchers and graduate students interested in martingale theory, Fourier analysis and in the relation between them.
This book discusses, develops and applies the theory of Vilenkin-Fourier series connected to modern harmonic analysis. The classical theory of Fourier series deals with decomposition of a function into sinusoidal waves. Unlike these continuous waves the Vilenkin (Walsh) functions are rectangular waves. Such waves have already been used frequently in the theory of signal transmission, multiplexing, filtering, image enhancement, code theory, digital signal processing and pattern recognition. The development of the theory of Vilenkin-Fourier series has been strongly influenced by the classical theory of trigonometric series. Because of this it is inevitable to compare results of Vilenkin-Fourier series to those on trigonometric series. There are many similarities between these theories, but there exist differences also. Much of these can be explained by modern abstract harmonic analysis, which studies orthonormal systems from the point of view of the structure of a topological group. The first part of the book can be used as an introduction to the subject, and the following chapters summarize the most recent research in this fascinating area and can be read independently. Each chapter concludes with historical remarks and open questions. The book will appeal to researchers working in Fourier and more broad harmonic analysis and will inspire them for their own and their students' research. Moreover, researchers in applied fields will appreciate it as a sourcebook far beyond the traditional mathematical domains.
The history of martingale theory goes back to the early fifties when Doob [57] pointed out the connection between martingales and analytic functions. On the basis of Burkholder's scientific achievements the mar tingale theory can perfectly well be applied in complex analysis and in the theory of classical Hardy spaces. This connection is the main point of Durrett's book [60]. The martingale theory can also be well applied in stochastics and mathematical finance. The theories of the one-parameter martingale and the classical Hardy spaces are discussed exhaustively in the literature (see Garsia [83], Neveu [138], Dellacherie and Meyer [54, 55], Long [124], Weisz [216] and Duren [59], Stein [193, 194], Stein and Weiss [192], Lu [125], Uchiyama [205]). The theory of more-parameter martingales and martingale Hardy spaces is investigated in Imkeller [107] and Weisz [216]. This is the first mono graph which considers the theory of more-parameter classical Hardy spaces. The methods of proofs for one and several parameters are en tirely different; in most cases the theorems stated for several parameters are much more difficult to verify. The so-called atomic decomposition method that can be applied both in the one-and more-parameter cases, was considered for martingales by the author in [216].
The real-variable theory of function spaces has always been at the core of harmonic analysis. In particular, the real-variable theory of the Hardy space is a fundamental tool of harmonic analysis, with applications and connections to complex analysis, partial differential equations, and functional analysis. This book is devoted to exploring properties of generalized Herz spaces and establishing a complete real-variable theory of Hardy spaces associated with local and global generalized Herz spaces via a totally fresh perspective. This means that the authors view these generalized Herz spaces as special cases of ball quasi-Banach function spaces. In this book, the authors first give some basic properties of generalized Herz spaces and obtain the boundedness and the compactness characterizations of commutators on them. Then the authors introduce the associated Herz–Hardy spaces, localized Herz–Hardy spaces, and weak Herz–Hardy spaces, and develop a complete real-variable theory of these Herz–Hardy spaces, including their various maximal function, atomic, molecular as well as various Littlewood–Paley function characterizations. As applications, the authors establish the boundedness of some important operators arising from harmonic analysis on these Herz–Hardy spaces. Finally, the inhomogeneous Herz–Hardy spaces and their complete real-variable theory are also investigated. With the fresh perspective and the improved conclusions on the real-variable theory of Hardy spaces associated with ball quasi-Banach function spaces, all the obtained results of this book are new and their related exponents are sharp. This book will be appealing to researchers and graduate students who are interested in function spaces and their applications.
This book investigates the convergence and summability of both one-dimensional and multi-dimensional Fourier transforms, as well as the theory of Hardy spaces. To do so, it studies a general summability method known as theta-summation, which encompasses all the well-known summability methods, such as the Fejér, Riesz, Weierstrass, Abel, Picard, Bessel and Rogosinski summations. Following on the classic books by Bary (1964) and Zygmund (1968), this is the first book that considers strong summability introduced by current methodology. A further unique aspect is that the Lebesgue points are also studied in the theory of multi-dimensional summability. In addition to classical results, results from the past 20-30 years – normally only found in scattered research papers – are also gathered and discussed, offering readers a convenient “one-stop” source to support their work. As such, the book will be useful for researchers, graduate and postgraduate students alike.
This monograph presents the summability of higher dimensional Fourier series, and generalizes the concept of Lebesgue points. Focusing on Fejér and Cesàro summability, as well as theta-summation, readers will become more familiar with a wide variety of summability methods. Within the theory of higher dimensional summability of Fourier series, the book also provides a much-needed simple proof of Lebesgue’s theorem, filling a gap in the literature. Recent results and real-world applications are highlighted as well, making this a timely resource. The book is structured into four chapters, prioritizing clarity throughout. Chapter One covers basic results from the one-dimensional Fourier series, and offers a clear proof of the Lebesgue theorem. In Chapter Two, convergence and boundedness results for the lq-summability are presented. The restricted and unrestricted rectangular summability are provided in Chapter Three, as well as the sufficient and necessary condition for the norm convergence of the rectangular theta-means. Chapter Four then introduces six types of Lebesgue points for higher dimensional functions. Lebesgue Points and Summability of Higher Dimensional Fourier Series will appeal to researchers working in mathematical analysis, particularly those interested in Fourier and harmonic analysis. Researchers in applied fields will also find this useful.
This book presents interpolation theory from its classical roots beginning with Banach function spaces and equimeasurable rearrangements of functions, providing a thorough introduction to the theory of rearrangement-invariant Banach function spaces. At the same time, however, it clearly shows how the theory should be generalized in order to accommodate the more recent and powerful applications. Lebesgue, Lorentz, Zygmund, and Orlicz spaces receive detailed treatment, as do the classical interpolation theorems and their applications in harmonic analysis.The text includes a wide range of techniques and applications, and will serve as an amenable introduction and useful reference to the modern theory of interpolation of operators.
This book focuses on the major applications of martingales to the geometry of Banach spaces, and a substantial discussion of harmonic analysis in Banach space valued Hardy spaces is also presented. It covers exciting links between super-reflexivity and some metric spaces related to computer science, as well as an outline of the recently developed theory of non-commutative martingales, which has natural connections with quantum physics and quantum information theory. Requiring few prerequisites and providing fully detailed proofs for the main results, this self-contained study is accessible to graduate students with a basic knowledge of real and complex analysis and functional analysis. Chapters can be read independently, with each building from the introductory notes, and the diversity of topics included also means this book can serve as the basis for a variety of graduate courses.
Inequalities play a central role in mathematics with various applications in other disciplines. The main goal of this contributed volume is to present several important matrix, operator, and norm inequalities in a systematic and self-contained fashion. Some powerful methods are used to provide significant mathematical inequalities in functional analysis, operator theory and numerous fields in recent decades. Some chapters are devoted to giving a series of new characterizations of operator monotone functions and some others explore inequalities connected to log-majorization, relative operator entropy, and the Ando-Hiai inequality. Several chapters are focused on Birkhoff–James orthogonality and approximate orthogonality in Banach spaces and operator algebras such as C*-algebras from historical perspectives to current development. A comprehensive account of the boundedness, compactness, and restrictions of Toeplitz operators can be found in the book. Furthermore, an overview of the Bishop-Phelps-Bollobás theorem is provided. The state-of-the-art of Hardy-Littlewood inequalities in sequence spaces is given. The chapters are written in a reader-friendly style and can be read independently. Each chapter contains a rich bibliography. This book is intended for use by both researchers and graduate students of mathematics, physics, and engineering.