Download Free Martian Gullies And Their Earth Analogues Book in PDF and EPUB Free Download. You can read online Martian Gullies And Their Earth Analogues and write the review.

Gullies on Mars resemble terrestrial gullies involved in the transport of abundant material down steep slopes by liquid water. However, liquid water should not be stable at the Martian surface. The articles in this volume present the two main opposing theories for Martian gully formation: climate-driven melting of surficial water-ice deposits and seasonal dry-ice sublimation. The evidence presented ranges from remote-sensing observations, to experimental simulations, to comparison with Earth analogues. The opposing hypotheses imply either that Mars has been unusually wet in the last few million years or that it has remained a cold dry desert - both with profound implications for understanding the water budget of Mars and its habitability. The debate questions the limits of remote-sensing data and how we interpret active processes on extra-terrestrial planetary surfaces, even beyond those on Mars, as summarized by the review paper at the beginning of the book.
Gullies on Mars resemble terrestrial gullies involved in the transport of abundant material down steep slopes by liquid water. However, liquid water should not be stable at the Martian surface. The articles in this volume present the two main opposing theories for Martian gully formation: climate-driven melting of surficial water-ice deposits and seasonal dry-ice sublimation. The evidence presented ranges from remote-sensing observations, to experimental simulations, to comparison with Earth analogues. The opposing hypotheses imply either that Mars has been unusually wet in the last few million years or that it has remained a cold dry desert – both with profound implications for understanding the water budget of Mars and its habitability. The debate questions the limits of remote-sensing data and how we interpret active processes on extra-terrestrial planetary surfaces, even beyond those on Mars, as summarized by the review paper at the beginning of the book.
Dynamic Mars: Recent and Current Landscape Evolution of the Red Planet presents the latest observations, interpretations, and explanations of geological change at the surface or near-surface of this terrestrial body. These changes raise questions about a decades-old paradigm, formed largely in the aftermath of very coarse Mariner-mission imagery in the 1960s, suggesting that much of the interesting geological activity on Mars occurred deep in its past, eons ago. The book includes discussions of (1) Mars' ever-changing atmosphere and the impact of this on the planet's surface and near-surface; (2) the possible involvement of water in relatively new, if not contemporary, gully-like flows and slope streaks (i.e. recurring slope lineae); and (3) the identification of a broad suite of agents and processes (i.e. glacial, periglacial, aeolian, meteorological, volcanic, and meteoric) that are actively revising surface and near-surface landscapes, landforms, and features on a local, regional, and hemispheric scale.Highly illustrated and punctuated by data from the most recent Mars missions, Dynamic Mars is a valuable resource for all levels of research in the geological history of Mars, as well as of the three other terrestrial planets. - Utilizes observational and model-based data as well as geological context to frame the understanding of the dynamic surface and near-surface of Mars - Presents a broad spectrum of highly regarded experts and themes to discuss and evaluate the geological history of late and current Mars - Includes extensive and detailed imagery to clearly illustrate these themes, discussions, and evaluations
Volatiles in the Martian Crust is a vital reference for future missions - including ESA's EXO Mars and NASA's Mars2020 rover - looking for evidence of life on Mars and the potential for habitability and human exploration of the Martian crust. Mars science is a rapidly evolving topic with new data returned from the planet on a daily basis. The book presents chapters written by well-established experts who currently focus on the topic, providing the reader with a fresh, up-to-date and accurate view. Organized into two main sections, the first half of the book focuses on the Martian meteorites and specific volatile elements. The second half of the book explores processes and locations on the crust, including what we have learned about volatile mobility in the Martian crust. Coverage includes data from orbiter and in situ rovers and landers, geochemical and geophysical modeling, and combined data from the SNC meteorites. - Presents information about the nature, relationship, and reactivity of chemical elements and compounds on Mars - Explores the potential habitability of Mars - Provides a comprehensive view of volatiles in the Martian crust from studies of actual samples as well as from the variety of landed missions, including the MER and Curiosity rovers - Delivers a vital reference for ongoing and future missions to Mars while synthesizing large data sets and research on volatiles in the Martian atmosphere - Concludes with an informative summary chapter that looks to future Mars missions and what might be learned
Mars Geological Enigmas: From the Late Noachian Epoch to the Present Day presents outstanding questions on the geology of Mars and divergent viewpoints based on varying interpretations and analyses. The result is a robust and comprehensive discussion that provides opportunities for planetary scientists to develop their own opinions and ways forward. Each theme opens with an introduction that includes background on the topic and lays out questions to be addressed. Alternate perspectives are covered for each topic, including methods, observations, analyses, and in-depth discussion of the conclusions. Chapters within each theme reference each other to facilitate comparison and deeper understanding of divergent opinions. - Offers a transchronological view of the geological history of Mars, addressing thematic questions from a broad temporal perspective - Discusses outstanding questions on Mars from diverging perspectives - Includes key questions and answers, as well as a look ahead to which puzzles remain to be solved
This volume on astrobiology of the Springer Briefs in Life Sciences book series addresses the three fundamental questions on origin, evolution, distribution and future of life in the universe: how does life begin and evolve? Is there life beyond Earth and, if so, how can we detect it? What is the future of life on Earth and in the universe? The book provides insights into astrobiological experiments that are being performed on the International Space Station, ISS, and discusses their findings. This extremely exciting volume on astrobiology is intended for scientists of various research fields and for laypersons interested in space research and in the fundamental issues of the universe and life.
A richly illustrated and stunning visual reference work on Mars, replacing the NASA atlas from the 1970s.
Physiological and Biotechnological Aspects of Extremophiles highlights the current and topical areas of research in this rapidly growing field. Expert authors from around the world provide the latest insights into the mechanisms of these fascinating organisms use to survive.The vast majority of extremophiles are microbes which include archaea, bacteria and some eukaryotes. These microbes live under chemical and physical extremes that are usually lethal to cellular molecules, yet they manage to survive and even thrive. Extremophiles have important practical uses. They are a valuable source of industrially important enzymes and recent research has revealed novel mechanisms and biomolecular structures with a broad range of potential applications in biotechnology, biomining, and bioremediation.Aimed at research scientists, students, microbiologists, and biotechnologists, this book is an essential reading for scientists working with extremophiles and a recommended reference text for anyone interested in the microbiology, bioprospecting, biomining, biofuels, and extremozymes of these organisms. - Shows the implications of the physiological adaptations of microbes from extreme habitats that are largely contributed by their biomolecules from basic to applied research - Provides in-depth knowledge of genomic plasticity and proteome of different extremophiles - Gives detailed and comprehensive insight about use of genetic engineering as well as genome editing for industrial applications
Mars has been extensively photographed by cameras and compositionally detected by spectrometers onboard orbiters on a global scale, and explored in-situ by landers and rovers at both local and outcrop scales in different locations. The results have proved that the Martian surface is rich in Earth-like geomorphologies, and the study of terrestrial analogs to Mars has been listed as one of the highest priorities of Martian science. With increasing new discoveries by in-situ explorations, Mars exploration has begun to enter the era of focusing on detailed analyses at regional to outcrop levels, rather than global mapping. Analog studies are playing a crucial role in this transition, making this book, which introduces the methodology and provides cases for readers, essentially important.Dozens of sites on Earth have been listed as analog targets for comparative study with the geomorphology, geology, geochemistry, environment and habitability of Mars. However, due to the diversity of landforms and forming mechanisms, and the long history of Mars, no single analog site on Earth can be fully compared to Mars. Nonetheless, the Qaidam Basin has been listed as an unique Mars analog site for studying the red planet's geomorphology, geology, and environmental changes, particularly regarding the evolution of paleolakes on Mars. This kind of setting has always been listed as a top priority for the search of life on Mars.This book contains first-hand information and on-site images obtained by the work's contributing authors, and is an essential read for anyone interested in Martian geomorphology and its evolution processes and history.
A research summary of the causes and effects of megaflooding on Earth and Mars, for hydrologists, planetary scientists and engineers.