Download Free Markov Renewal And Piecewise Deterministic Processes Book in PDF and EPUB Free Download. You can read online Markov Renewal And Piecewise Deterministic Processes and write the review.

This book is aimed at researchers, graduate students and engineers who would like to be initiated to Piecewise Deterministic Markov Processes (PDMPs). A PDMP models a deterministic mechanism modified by jumps that occur at random times. The fields of applications are numerous : insurance and risk, biology, communication networks, dependability, supply management, etc. Indeed, the PDMPs studied so far are in fact deterministic functions of CSMPs (Completed Semi-Markov Processes), i.e. semi-Markov processes completed to become Markov processes. This remark leads to considerably broaden the definition of PDMPs and allows their properties to be deduced from those of CSMPs, which are easier to grasp. Stability is studied within a very general framework. In the other chapters, the results become more accurate as the assumptions become more precise. Generalized Chapman-Kolmogorov equations lead to numerical schemes. The last chapter is an opening on processes for which the deterministic flow of the PDMP is replaced with a Markov process. Marked point processes play a key role throughout this book.
This book provides an extensive, systematic overview of the modern theory of telegraph processes and their multidimensional counterparts, together with numerous fruitful applications in financial modelling. Focusing on stochastic processes of bounded variation instead of classical diffusion, or more generally, Lévy processes, has two obvious benefits. First, the mathematical technique is much simpler, which helps to concentrate on the key problems of stochastic analysis and applications, including financial market modelling. Second, this approach overcomes some shortcomings of the (parabolic) nature of classical diffusions that contradict physical intuition, such as infinite propagation velocity and infinite total variation of paths. In this second edition, some sections of the previous text are included without any changes, while most others have been expanded and significantly revised. These are supplemented by predominantly new results concerning piecewise linear processes with arbitrary sequences of velocities, jump amplitudes, and switching intensities. The chapter on functionals of the telegraph process has been significantly expanded by adding sections on exponential functionals, telegraph meanders and running extrema, the times of the first passages of telegraph processes with alternating random jumps, and distribution of the Euclidean distance between two independent telegraph processes. A new chapter on the multidimensional counterparts of the telegraph processes is also included. The book is intended for graduate students in mathematics, probability, statistics and quantitative finance, and for researchers working at academic institutions, in industry and engineering. It can also be used by university lecturers and professionals in various applied areas.
Piecewise-deterministic Markov processes form a class of stochastic models with a sizeable scope of applications: biology, insurance, neuroscience, networks, finance... Such processes are defined by a deterministic motion punctuated by random jumps at random times, and offer simple yet challenging models to study. Nevertheless, the issue of statistical estimation of the parameters ruling the jump mechanism is far from trivial. Responding to new developments in the field as well as to current research interests and needs, Statistical inference for piecewise-deterministic Markov processes offers a detailed and comprehensive survey of state-of-the-art results. It covers a wide range of general processes as well as applied models. The present book also dwells on statistics in the context of Markov chains, since piecewise-deterministic Markov processes are characterized by an embedded Markov chain corresponding to the position of the process right after the jumps.
Mathematically rigorous exposition of the basic theory of marked point processes and piecewise deterministic stochastic processes Point processes are constructed from scratch with detailed proofs Includes applications with examples and exercises in survival analysis, branching processes, ruin probabilities, sports (soccer), finance and risk management, and queueing theory Accessible to a wider cross-disciplinary audience
"Constructive Computation in Stochastic Models with Applications: The RG-Factorizations" provides a unified, constructive and algorithmic framework for numerical computation of many practical stochastic systems. It summarizes recent important advances in computational study of stochastic models from several crucial directions, such as stationary computation, transient solution, asymptotic analysis, reward processes, decision processes, sensitivity analysis as well as game theory. Graduate students, researchers and practicing engineers in the field of operations research, management sciences, applied probability, computer networks, manufacturing systems, transportation systems, insurance and finance, risk management and biological sciences will find this book valuable. Dr. Quan-Lin Li is an Associate Professor at the Department of Industrial Engineering of Tsinghua University, China.
In honor of the work of Professor Shunji Osaki, Stochastic Reliability and Maintenance Modeling provides a comprehensive study of the legacy of and ongoing research in stochastic reliability and maintenance modeling. Including associated application areas such as dependable computing, performance evaluation, software engineering, communication engineering, distinguished researchers review and build on the contributions over the last four decades by Professor Shunji Osaki. Fundamental yet significant research results are presented and discussed clearly alongside new ideas and topics on stochastic reliability and maintenance modeling to inspire future research. Across 15 chapters readers gain the knowledge and understanding to apply reliability and maintenance theory to computer and communication systems. Stochastic Reliability and Maintenance Modeling is ideal for graduate students and researchers in reliability engineering, and workers, managers and engineers engaged in computer, maintenance and management works.
Engineering Reliability and Risk Assessment explains how to improve the performance of a system using the latest risk and reliability models. Against a backdrop of increasing availability of industrial data, and ever-increasing global commercial competition, the standards for optimal efficiency with minimum hazards keep improving. Topics explained include Effective strategies for the maintenance of the mechanical components of a system, How to schedule necessary interventions throughout the product life cycle, How to understand the structure and cost of complex systems, Planning a schedule to improve the reliability and life of the system, software, system safety and risk informed asset management, and more. - Uses case studies from industry practice to explain innovative solutions to real world risk assessment problems - Addresses the full interdisciplinary range of topics that influence this complex field - Provides brief introductions to important concepts, including risk and reliability analysis and fuzzy reliability
Piecewise-deterministic Markov processes form a class of stochastic models with a sizeable scope of applications: biology, insurance, neuroscience, networks, finance... Such processes are defined by a deterministic motion punctuated by random jumps at random times, and offer simple yet challenging models to study. Nevertheless, the issue of statistical estimation of the parameters ruling the jump mechanism is far from trivial. Responding to new developments in the field as well as to current research interests and needs, Statistical inference for piecewise-deterministic Markov processes offers a detailed and comprehensive survey of state-of-the-art results. It covers a wide range of general processes as well as applied models. The present book also dwells on statistics in the context of Markov chains, since piecewise-deterministic Markov processes are characterized by an embedded Markov chain corresponding to the position of the process right after the jumps.
Stochastic Processes for Insurance and Finance offers a thorough yet accessible reference for researchers and practitioners of insurance mathematics. Building on recent and rapid developments in applied probability, the authors describe in general terms models based on Markov processes, martingales and various types of point processes. Discussing frequently asked insurance questions, the authors present a coherent overview of the subject and specifically address: The principal concepts from insurance and finance Practical examples with real life data Numerical and algorithmic procedures essential for modern insurance practices Assuming competence in probability calculus, this book will provide a fairly rigorous treatment of insurance risk theory recommended for researchers and students interested in applied probability as well as practitioners of actuarial sciences. Wiley Series in Probability and Statistics
This book provides recent results on the stochastic approximation of systems by weak convergence techniques. General and particular schemes of proofs for average, diffusion, and Poisson approximations of stochastic systems are presented, allowing one to simplify complex systems and obtain numerically tractable models.The systems discussed in the book include stochastic additive functionals, dynamical systems, stochastic integral functionals, increment processes and impulsive processes. All these systems are switched by Markov and semi-Markov processes whose phase space is considered in asymptotic split and merging schemes. Most of the results from semi-Markov processes are new and presented for the first time in this book.