Download Free Markov Operators Positive Semigroups And Approximation Processes Book in PDF and EPUB Free Download. You can read online Markov Operators Positive Semigroups And Approximation Processes and write the review.

This research monograph gives a detailed account of a theory which is mainly concerned with certain classes of degenerate differential operators, Markov semigroups and approximation processes. These mathematical objects are generated by arbitrary Markov operators acting on spaces of continuous functions defined on compact convex sets; the study of the interrelations between them constitutes one of the distinguishing features of the book. Among other things, this theory provides useful tools for studying large classes of initial-boundary value evolution problems, the main aim being to obtain a constructive approximation to the associated positive C0-semigroups by means of iterates of suitable positive approximating operators. As a consequence, a qualitative analysis of the solutions to the evolution problems can be efficiently developed. The book is mainly addressed to research mathematicians interested in modern approximation theory by positive linear operators and/or in the theory of positive C0-semigroups of operators and evolution equations. It could also serve as a textbook for a graduate level course.
This contributed volume contains a collection of articles on the most recent advances in integral methods. The first of two volumes, this work focuses on the construction of theoretical integral methods. Written by internationally recognized researchers, the chapters in this book are based on talks given at the Fourteenth International Conference on Integral Methods in Science and Engineering, held July 25-29, 2016, in Padova, Italy. A broad range of topics is addressed, such as:• Integral equations• Homogenization• Duality methods• Optimal design• Conformal techniques This collection will be of interest to researchers in applied mathematics, physics, and mechanical and electrical engineering, as well as graduate students in these disciplines, and to other professionals who use integration as an essential tool in their work.
This book is a collection of short papers from the 11th International ISAAC Congress 2017 in Växjö, Sweden. The papers, written by the best international experts, are devoted to recent results in mathematics with a focus on analysis. The volume provides to both specialists and non-specialists an excellent source of information on the current research in mathematical analysis and its various interdisciplinary applications.
This book is an easy-to-read reference providing a link between functional analysis and diffusion processes. More precisely, the book takes readers to a mathematical crossroads of functional analysis (macroscopic approach), partial differential equations (mesoscopic approach), and probability (microscopic approach) via the mathematics needed for the hard parts of diffusion processes. This work brings these three fields of analysis together and provides a profound stochastic insight (microscopic approach) into the study of elliptic boundary value problems. The author does a massive study of diffusion processes from a broad perspective and explains mathematical matters in a more easily readable way than one usually would find. The book is amply illustrated; 14 tables and 141 figures are provided with appropriate captions in such a fashion that readers can easily understand powerful techniques of functional analysis for the study of diffusion processes in probability. The scope of the author’s work has been and continues to be powerful methods of functional analysis for future research of elliptic boundary value problems and Markov processes via semigroups. A broad spectrum of readers can appreciate easily and effectively the stochastic intuition that this book conveys. Furthermore, the book will serve as a sound basis both for researchers and for graduate students in pure and applied mathematics who are interested in a modern version of the classical potential theory and Markov processes. For advanced undergraduates working in functional analysis, partial differential equations, and probability, it provides an effective opening to these three interrelated fields of analysis. Beginning graduate students and mathematicians in the field looking for a coherent overview will find the book to be a helpful beginning. This work will be a major influence in a very broad field of study for a long time.
This book collects selected peer reviewed papers on the topics of Nonlinear Analysis, Functional Analysis, (Korovkin-Type) Approximation Theory, and Partial Differential Equations. The aim of the volume is, in fact, to promote the connection among those different fields in Mathematical Analysis. The book celebrates Francesco Altomare, on the occasion of his 70th anniversary.
Due to the strong appeal and wide use of this monograph, it is now available in its third revised edition. The monograph gives a systematic treatment of 3-dimensional topological quantum field theories (TQFTs) based on the work of the author with N. Reshetikhin and O. Viro. This subject was inspired by the discovery of the Jones polynomial of knots and the Witten-Chern-Simons field theory. On the algebraic side, the study of 3-dimensional TQFTs has been influenced by the theory of braided categories and the theory of quantum groups. The book is divided into three parts. Part I presents a construction of 3-dimensional TQFTs and 2-dimensional modular functors from so-called modular categories. This gives a vast class of knot invariants and 3-manifold invariants as well as a class of linear representations of the mapping class groups of surfaces. In Part II the technique of 6j-symbols is used to define state sum invariants of 3-manifolds. Their relation to the TQFTs constructed in Part I is established via the theory of shadows. Part III provides constructions of modular categories, based on quantum groups and skein modules of tangles in the 3-space. This fundamental contribution to topological quantum field theory is accessible to graduate students in mathematics and physics with knowledge of basic algebra and topology. It is an indispensable source for everyone who wishes to enter the forefront of this fascinating area at the borderline of mathematics and physics. Contents: Invariants of graphs in Euclidean 3-space and of closed 3-manifolds Foundations of topological quantum field theory Three-dimensional topological quantum field theory Two-dimensional modular functors 6j-symbols Simplicial state sums on 3-manifolds Shadows of manifolds and state sums on shadows Constructions of modular categories
The general topic of this book is the ergodic behavior of Markov processes. A detailed introduction to methods for proving ergodicity and upper bounds for ergodic rates is presented in the first part of the book, with the focus put on weak ergodic rates, typical for Markov systems with complicated structure. The second part is devoted to the application of these methods to limit theorems for functionals of Markov processes. The book is aimed at a wide audience with a background in probability and measure theory. Some knowledge of stochastic processes and stochastic differential equations helps in a deeper understanding of specific examples. Contents Part I: Ergodic Rates for Markov Chains and Processes Markov Chains with Discrete State Spaces General Markov Chains: Ergodicity in Total Variation MarkovProcesseswithContinuousTime Weak Ergodic Rates Part II: Limit Theorems The Law of Large Numbers and the Central Limit Theorem Functional Limit Theorems
This monograph discusses recent advances in ergodic theory and dynamical systems. As a mixture of survey papers of active research areas and original research papers, this volume attracts young and senior researchers alike. Contents: Duality of the almost periodic and proximal relations Limit directions of a vector cocycle, remarks and examples Optimal norm approximation in ergodic theory The iterated Prisoner’s Dilemma: good strategies and their dynamics Lyapunov exponents for conservative twisting dynamics: a survey Takens’ embedding theorem with a continuous observable
By connecting dynamical systems and number theory, this graduate textbook on ergodic theory acts as an introduction to a highly active area of mathematics, where a variety of strands of research open up. The text explores various concepts in infinite ergodic theory, always using continued fractions and other number-theoretic dynamical systems as illustrative examples. Contents: Preface Mathematical symbols Number-theoretical dynamical systems Basic ergodic theory Renewal theory and α-sum-level sets Infinite ergodic theory Applications of infinite ergodic theory Bibliography Index
Ulam Stability of Operators presents a modern, unified, and systematic approach to the field. Focusing on the stability of functional equations across single variable, difference equations, differential equations, and integral equations, the book collects, compares, unifies, complements, generalizes, and updates key results. Whenever suitable, open problems are stated in corresponding areas. The book is of interest to researchers in operator theory, difference and functional equations and inequalities, differential and integral equations. - Allows readers to establish expert knowledge without extensive study of other books - Presents complex math in simple and clear language - Compares, generalizes and complements key findings - Provides numerous open problems