Download Free Marine Monitoring Platforms Book in PDF and EPUB Free Download. You can read online Marine Monitoring Platforms and write the review.

Ireland is a small Island in the North Atlantic with geography, weather and thus way of life dominated by the ocean. This book presents a comprehensive study of the challenges and technologies for observing the ocean environment. It describes the state-of-the-art in marine platforms internationally and provides a vision of platform technology in 2021 and beyond. Opportunities for ocean monitoring are detailed in the Irish context and recommendations are given for future development and investments in marine platforms.
In the history of humankind, the sea has always played a key role as a privileged medium for communication, commerce and contact among population centers. It constitutes an essential ecosystem, and an invaluable reservoir and source of food for all living beings. Therefore, its heath is a critical challenge for the survival of all humanity, particularly as one the most important environmental components targeted by global warming. Measuring and monitoring techniques are key tools for managing the marine environment and for supporting the Blue Economy. With this perspective, a series of annual international events, entitled Metrology for the Sea (MetroSea for short) was begun in 2017. Their increasing success inspired this book, which provides an anthology of tutorials dealing with a representative selection of topics of concern to a broad readership. The book covers two broad application areas, marine hydrography and meteorology, and then deals with instrumentation for measurement at sea. Typical metrological issues such as calibration and traceability, are considered, for both physical and chemical quantities. Key techniques, such as underwater acoustic investigation, remote sensing, measurement of waves and monitoring networks, are treated alongside marine geology and the monitoring of animal species. Economic and legal aspects of metrology for navigation are also discussed. Such an unparalleled wide vision of measurement for the sea will be of interest to a broad audience of scientists, engineers, economists, and their students.
This open access book provides a comprehensive examination of the European Landing Obligation policy from many relevant perspectives. It includes evaluations of its impacts at economical, socio-cultural, ecological and institutional levels. It also discusses the feasibility and benefits of several potential mitigation strategies. The book was timely published, exactly at the time where the Landing Obligation was planned to be fully implemented. This book is of significant interest to all stakeholders involved, but also to the general public of Europe and to other jurisdictions throughout the world that are also searching for ways to deal with by-catch and discard issues.
This manual describes the wide range of electromechanical, electrochemical and electro-optical transducers at the heart of current field-deployable ocean observing instruments. Their modes of operation, precision and accuracy are discussed in detail. Observing platforms ranging from the traditional to the most recently developed are described, as are the challenges of integrating instrument suits to individual platforms. Technical approaches are discussed to address environmental constraints on instrument and platform operation such as power sources, corrosion, biofouling and mechanical abrasion. Particular attention is also given to data generated by the networks of observing platforms that are typically integrated into value-added data visualization products, including numerical simulations or models. Readers will learn about acceptable data formats and representative model products. The last section of the book is devoted to the challenges of planning, deploying and maintaining coastal ocean observing systems. Readers will discover practical applications of ocean observations in diverse fields including natural resource conservation, commerce and recreation, safety and security, and climate change resiliency and adaptation. This volume will appeal to ocean engineers, oceanographers, commercial and recreational ocean data users, observing systems operators, and advanced undergraduate and graduate students in the field of ocean observing.
An estimated 8 million metric tons (MMT) of plastic waste enters the world's ocean each year - the equivalent of dumping a garbage truck of plastic waste into the ocean every minute. Plastic waste is now found in almost every marine habitat, from the ocean surface to deep sea sediments to the ocean's vast mid-water region, as well as the Great Lakes. This report responds to a request in the bipartisan Save Our Seas 2.0 Act for a scientific synthesis of the role of the United States both in contributing to and responding to global ocean plastic waste. The United States is a major producer of plastics and in 2016, generated more plastic waste by weight and per capita than any other nation. Although the U.S. solid waste management system is advanced, it is not sufficient to deter leakage into the environment. Reckoning with the U.S. Role in Global Ocean Plastic Waste calls for a national strategy by the end of 2022 to reduce the nation's contribution to global ocean plastic waste at every step - from production to its entry into the environment - including by substantially reducing U.S. solid waste generation. This report also recommends a nationally-coordinated and expanded monitoring system to track plastic pollution in order to understand the scales and sources of U.S. plastic waste, set reduction and management priorities, and measure progress.
Geological Carbon Storage Subsurface Seals and Caprock Integrity Seals and caprocks are an essential component of subsurface hydrogeological systems, guiding the movement and entrapment of hydrocarbon and other fluids. Geological Carbon Storage: Subsurface Seals and Caprock Integrity offers a survey of the wealth of recent scientific work on caprock integrity with a focus on the geological controls of permanent and safe carbon dioxide storage, and the commercial deployment of geological carbon storage. Volume highlights include: Low-permeability rock characterization from the pore scale to the core scale Flow and transport properties of low-permeability rocks Fundamentals of fracture generation, self-healing, and permeability Coupled geochemical, transport and geomechanical processes in caprock Analysis of caprock behavior from natural analogues Geochemical and geophysical monitoring techniques of caprock failure and integrity Potential environmental impacts of carbon dioxide migration on groundwater resources Carbon dioxide leakage mitigation and remediation techniques Geological Carbon Storage: Subsurface Seals and Caprock Integrity is an invaluable resource for geoscientists from academic and research institutions with interests in energy and environment-related problems, as well as professionals in the field. Book Review: William R. Green, Patrick Taylor, Sven Treitel, and Moritz Fliedner, (2020), "Reviews," The Leading Edge 39: 214–216 Geological Carbon Storage: Subsurface Seals and Caprock Integrity, edited by Stéphanie Vialle, Jonathan Ajo-Franklin, and J. William Carey, ISBN 978-1-119-11864-0, 2018, American Geophysical Union and Wiley, 364 p., US$199.95 (print), US$159.99 (eBook). This volume is a part of the AGU/Wiley Geophysical Monograph Series. The editors assembled an international team of earth scientists who present a comprehensive approach to the major problem of placing unwanted and/or hazardous fluids beneath a cap rock seal to be impounded. The compact and informative preface depicts the nature of cap rocks and the problems that may occur over time or with a change in the formation of the cap rock. I have excerpted a quote from the preface that describes the scope of the volume in a concise and thorough matter. “Caprocks can be defined as a rock that prevents the flow of a given fluid at certain temperature, pressure, and chemical conditions. ... A fundamental understanding of these units and of their evolution over time in the context of subsurface carbon storage is still lacking.” This volume describes the scope of current research being conducted on a global scale, with 31 of the 83 authors working outside of the United States. The studies vary but can be generalized as monitoring techniques for cap rock integrity and the consequence of the loss of that integrity. The preface ends by calling out important problems that remain to be answered. These include imaging cap rocks in situ, detecting subsurface leaks before they reach the surface, and remotely examining the state of the cap rock to avert any problems. Chapter 3 describes how newer methods are used to classify shale. These advanced techniques reveal previously unknown microscopic properties that complicate classification. This is an example of the more we know, the more we don't know. A sedimentologic study of the formation of shale (by far the major sedimentary rock and an important rock type) is described in Chapter 4. The authors use diagrammatic examples to illustrate how cap rocks may fail through imperfect seal between the drill and wall rock, capillary action, or a structural defect (fault). Also, the shale pore structures vary in size, and this affects the reservoir. There are descriptions of the pore structure in the Eagle Ford and Marcellus shales and several others. Pore structures are analyzed using state-of-the-art ultra-small-angle X-ray or neutron scattering. They determine that the overall porosity decreases nonlinearly with time. There are examples of cap rock performance under an array of diagnostic laboratory analyses and geologic field examples (e.g., Marcellus Formation). The importance of the sequestration of CO2 and other contaminants highlights the significance of this volume. The previous and following chapters illuminate the life history of the lithologic reservoir seal. I would like to call out Chapter 14 in which the authors illustrate the various mechanisms by which a seal can fail and Chapter 15 in which the authors address the general problems of the effect of CO2 sequestration on the environment. They establish a field test, consisting of a trailer and large tank of fluids with numerous monitoring instruments to replicate the effect of a controlled release of CO2-saturated water into a shallow aquifer. This chapter's extensive list of references will be of interest to petroleum engineers, rock mechanics, and environmentalists. The authors of this volume present a broad view of the underground storage of CO2. Nuclear waste and hydrocarbons are also considered for underground storage. There are laboratory, field, and in situ studies covering nearly all aspects of this problem. I cannot remember a study in which so many different earth science resources were applied to a single problem. The span of subjects varies from traditional geochemical analysis with the standard and latest methods in infrared and X-ray techniques, chemical and petroleum engineering, sedimentary mineralogy, hydrology, and geomechanical studies. This volume is essential to anyone working in this field as it brings several disciplines together to produce a comprehensive study of carbon sequestration. While the volume is well illustrated, there is a lack of color figures. Each chapter should have at least two color figures, or there should be several pages of color figures bound in the center of the volume. Many of the figures would be more meaningful if they had been rendered in color. Also, the acronyms are defined in the individual chapters, but it would be helpful to have a list of acronyms after the extensive index. I recommend this monograph to all earth scientists but especially petroleum engineers, structural geologists, mineralogists, and environmental scientists. Since these chapters cover a broad range of studies, it would be best if the reader has a broad background. — Patrick Taylor Davidsonville, Maryland
Studying the Ocean Planet requires measuring and sampling instruments to feed models that take into account its complexity. This book presents the diversity of observation and monitoring techniques at various scales, but also different kinds of model that take into account some conceptual schemes incorporating various scientific knowledge. Sampling is approached via the efficiency of fishing gears; underwater acoustics is used to detect, count, identify and listen to live and mobile living resources. Bio-logging allows us to rely on the behavior of marine animals to help investigate environments that are difficult to sample by conventional means, while listing the physiological changes they undergo. Modeling is presented not only in a functional framework, but also in an exploratory design incorporating various scenarios for ecosystem changes under the pressure of global change. This ninth volume completes the "Seas and Oceans" Set that adopts a transversal approach leading to the governance and sustainable management of the marine environment.
Wide- scale chemical monitoring programmes are required by international conventions and European Union policies such as the Water Framework Directive (2000/60/EC) and the new EU Marine Strategy Framework Directive (MSFD). This entails all waters, including transitional and coastal waters, sediments and biota. The final volume in the Water Quality Measurement Serieshighlights policy frameworks and analytical trends with an emphasis on laboratory methods and quality control. Within this comprehensive text, the following sections are included: Setting the Scene; monitoring of pollutants Policy Settings; international conventions and EU marine strategy Marine monitored parameters; trace elements, chemical species, organic micropollutants, and nutrients Types of monitoring; classical chemical monitoring, biomonitoring and in-situ methods Quality assurance; certified reference materials for marine monitoring Research and developments; the role of sediments in coastal monitoring, and passive sampling technologies Chemical Marine Monitoring: Policy Framework and Analytical Trends is intended for postgraduates and researchers working in analytical chemistry and its application to environmental and health analyses. Those interested in developing new methods and materials in relation to drinking water regulations with also find this book beneficial.
Marine renewable energy has the potential to provide clean, reliable power to coastal communities and offshore facilities. However, the effects that marine energy development might have on the environment are not yet well understood. One environmental risk of particular concern is that of collision between an animal and a marine energy converter, but conducting the requisite environmental monitoring to understand this risk has presented a challenge at marine energy sites around the world for several reasons. First, if collision does occur, it is likely to be a rare event, meaning that detection requires continuous monitoring over extended deployments. Second, there is no single sensor that can provide all of the necessary information, and a combination of active acoustic, passive acoustic, and optical sensors is required. Third, these sensors can rapidly accrue vast volumes of data (petabyte-scale), making it difficult to extract insight from collected data. Finally, waves and currents at marine energy sites complicate the deployment of any monitoring instrumentation. Integrated instrumentation platforms that combine sensors into a single platform can address some of these challenges, because they can provide all of the necessary data and reduce deployment complexity. However, operation of such a platform must meet three directives in order to be most effective: 1) avoid biasing animal behavior through the use of instrumentation, 2) reliably detect rare events, and 3) avoid collection of unmanageable volumes of data. In this thesis, it is demonstrated that it is possible to simultaneously meet all three of these directives. This is demonstrated using the Adaptable Monitoring Package (AMP), an integrated instrumentation platform that combines multibeam sonars, optical cameras, hydrophones, and an acoustic Doppler current profiler. Artificial illumination is necessary to collect data from optical cameras when ambient light is not available. However, this light can either attract or repel animals. To minimize these effects (e.g., meet directive 1), the AMP uses detection, tracking, and classification of targets in the multibeam sonar data to restrict the use of artificial illumination to periods when a target of interest is present and might be detectable by the optical cameras. Information about target presence is also used to limit data archival to periods when a target of interest is present and avoid curation of data that does not contain any useful information (e.g., meeting directives 2 and 3). To benchmark this capability, real-time target detection and tracking are used to limit data archival to periods when any target of potential interest is present during a deployment of the AMP in Sequim Bay, WA. The target detection and tracking approach was found to have a true negative rate of 0.99 (e.g., an estimated 1% of targets of interest were not recorded), but 45% of recorded data did not contain a biological target. To address this relatively high false positive rate, recorded data were used to train machine learning classification of tracked targets. Three machine learning algorithms, trained using varying parameters and features, were evaluated for this task. A random forest algorithm was found to perform best, and the resulting classification model was able to distinguish between biological targets (e.g., seals, fish) and non-biological targets (e.g., acoustic artifacts) with a true positive rate of 0.97 and a false negative rate of 0.13. This model was then implemented in real-time during a second deployment of the AMP and used to limit data acquisition to periods when biological targets were predicted to be present. The model achieved the same true positive rate and a false positive rate of 0.23 in real-time after re-training with site specific data. From these results, general recommendations are made for implementation of real-time classification of biological targets in multibeam sonar data at new marine energy sites. All active acoustic sensors used on the Adaptable Monitoring Package, including the multibeam sonar used for real-time classification, have operating frequencies above the upper limit of marine mammal hearing. However, high-frequency transducers can still produce sound at lower frequencies audible to marine mammals. A comprehensive evaluation of the acoustic emissions of four active acoustic transducers used on the Adaptable Monitoring Package was conducted to understand whether they might cause hearing damage or bias marine mammal hearing (e.g., violating directive 1). All four transducers were found to produce measurable sound below 160 kHz, the reported upper limit of marine mammal hearing. A spatial map of the acoustic emissions of each sonar was used to evaluate potential effects on marine mammal hearing if the transducer were continuously operated from a stationary platform. Based on the cumulative sound exposure level metric, the acoustic emissions from any of the the transducers are unlikely to cause hearing damage to marine mammals. However, the extent of audibility is estimated to be on the order of 100 m, and further research is needed to understand how this might affect marine mammal behavior. In sum, this thesis provides a framework for effective environmental monitoring that can be used to reduce the the uncertainty surrounding the environmental effects of marine renewable energy. Further, many aspects are widely applicable to the ocean instrumentation community. Automatic classification of fauna in multibeam sonar data had not been previously demonstrated, and has applications in biological research. The methods developed for evaluation of the acoustic emissions of active acoustic sensors allow for effective comparison between transducers, which can be used to inform sensor selection and government regulation of their use.