Download Free Marine Ecosystem Modeling Book in PDF and EPUB Free Download. You can read online Marine Ecosystem Modeling and write the review.

Modelling of marine ecosystems is a rapidly developing branch of interdisciplinary oceanographic research. Introduction to the Modelling of Marine Ecosystems is the first consistent and comprehensive introduction to the development of models of marine ecosystems. It begins with simple first steps of modelling and develops more and more complex models. This step-by-step approach to increasing the complexity of the models is intended to allow students of biological oceanography and interested scientists with only limited experience in mathematical modelling to explore the theoretical framework and familiarize oneself with the methods. The book describes how biological model components can be integrated into three dimensional circulation models and how such models can be used for 'numerical experiments'. The book illustrates the mathematical aspects of modelling and gives application examples. The tutorial aspect of the book is supported by a set of MATLAB programs, which are provided on an accompanying CD-Rom and which can be used to reproduce many of the results presented in the book. Also available in paperback, ISBN 0-444-51704-9
The book presents a collection of large-scale network-modeling studies on coastal systems in Latin America. It includes a novel description of the functioning of coastal complex ecosystems and also predicts how natural and human-made disturbances percolate through the networks. Coastal areas belong to the most populated ecosystems around the globe, and are massively influenced by human impacts such as shipping, mining, fisheries, tourism, pollution and human settlements. Even though many of these activities have facilitated socio-economic development, they have also caused a significant deterioration in natural populations, communities and ecosystems worldwide. Covering coastal marine ecosystems of Latin America such as the NE and SE Pacific, NW Atlantic and Caribbean areas, it discusses the construction of quantitative (Ecopath-Ecosim-Ecospace and Centrality of Node Sets) and semi-quantitative (Loop Analysis) multispecies trophic-network models to describe and assess the impacts of natural and human interventions like pelagic and benthic fishing as well as natural events such as El Niño, and La Niña. The book also features steady state (and/or near moving equilibrium) and dynamical models to support the management of exploited organisms, and applies and quantifies macroscopic indices, based on Ascendency (Ulanowicz) and Local Stability (Levins ́ Loop Analysis). Further, it discusses the determination of the Keystone Species Complex Index, which is a holistic extension of the classical concept of Keystone Species (Paine), offering novel strategies for conservation monitoring and management.
This book presents the fundamental theories, methodologies and case studies of marine ecosystem modeling with a special focus on marine ecological dynamics that could provide scientists and researchers with a stabile and reliabile technical framework to study marine life and their developments.This book also clarifies the research objective and model classification methods of marine ecosystem dynamics research and analyzes the key marine ecological processes that affect modeling. The technical framework for improving the performance of modeling is also proposed, and the latest progress in research, as well as existing difficulties and challenges in end-to-end dynamics models are reviewed and analyzed. A dimensionality reduction theorem is established and derived for analyzing the stability of the solutions of a class of self-conserving marine ecosystem dynamic models. Also included in this work are several new types of marine ecosystem dynamics models constructed by modern computing methods — including artificial neural networks, cellular automata, and statistical dynamics — and case studies.This book is a suitable reference for professional and technical personnel, managers and graduate students specializing in the evolution mechanism, simulation, predication and regulation of marine ecosystems.
Ecosystem-Based Management (EBM) is one of the most holistic approaches to protecting marine and coastal ecosystems as it recognizes the need to protect entire marine ecosystems instead of individual species. After decades of pollution, habitat degradation and overfishing, now climate change and ocean acidification threaten the health of the ocean in unprecedented way. Environmental Management of Marine Ecosystems illustrates the current status, trends, and effects of climate, natural disturbances and anthropogenic impacts on marine ecosystems. It demonstrates how to integrate different management tools and models in an up-to-date, multidisciplinary approach to environmental management. This indispensable guide provides several case studies from around the world and creates a framework for identifying management tools and their applications in coral reefs, fisheries, migratory species, marine islands and associated ecosystems such as mangroves and sea grass beds. It discusses the physical and chemical compositions of marine ecosystems along with the threats and actions needed to protect them. The application of model framework to several contemporary management issues include the modelling of harmful algal bloom dynamics, understanding the dispersal of sea lice, and the possible impacts on intertidal communities of the provision of novel offshore habitat. The results of extensive research by an international team of contributors, the Environmental Management of Marine Ecosystems is designed to inform scientists, practitioners, academics, government and non-government policymakers on the particularities of marine ecosystems and assist them in understanding the EBM approaches in means of mitigation and adaptation of human activities that result in sustainability. These practices will help change the current methodologies used for resource assessment and the future regulations of marine resources.
A comprehensive account of joint species distribution modelling, covering statistical analyses in light of modern community ecology theory.
This advanced textbook on modeling, data analysis and numerical techniques for marine science has been developed from a course taught by the authors for many years at the Woods Hole Oceanographic Institute. The first part covers statistics: singular value decomposition, error propagation, least squares regression, principal component analysis, time series analysis and objective interpolation. The second part deals with modeling techniques: finite differences, stability analysis and optimization. The third part describes case studies of actual ocean models of ever increasing dimensionality and complexity, starting with zero-dimensional models and finishing with three-dimensional general circulation models. Throughout the book hands-on computational examples are introduced using the MATLAB programming language and the principles of scientific visualization are emphasised. Ideal as a textbook for advanced students of oceanography on courses in data analysis and numerical modeling, the book is also an invaluable resource for a broad range of scientists undertaking modeling in chemical, biological, geological and physical oceanography.
Responsible fisheries management is of increasing interest to the scientific community, resource managers, policy makers, stakeholders and the general public. Focusing solely on managing one species of fish stock at a time has become less of a viable option in addressing the problem. Incorporating more holistic considerations into fisheries management by addressing the trade-offs among the range of issues involved, such as ecological principles, legal mandates and the interests of stakeholders, will hopefully challenge and shift the perception that doing ecosystem-based fisheries management is unfeasible. Demonstrating that EBFM is in fact feasible will have widespread impact, both in US and international waters. Using case studies, underlying philosophies and analytical approaches, this book brings together a range of interdisciplinary topics surrounding EBFM and considers these simultaneously, with an aim to provide tools for successful implementation and to further the debate on EBFM, ultimately hoping to foster enhanced living marine resource management.
Although the ocean-and the resources within-seem limitless, there is clear evidence that human impacts such as overfishing, habitat destruction, and pollution disrupt marine ecosystems and threaten the long-term productivity of the seas. Declining yields in many fisheries and decay of treasured marine habitats, such as coral reefs, has heightened interest in establishing a comprehensive system of marine protected areas (MPAs)-areas designated for special protection to enhance the management of marine resources. Therefore, there is an urgent need to evaluate how MPAs can be employed in the United States and internationally as tools to support specific conservation needs of marine and coastal waters. Marine Protected Areas compares conventional management of marine resources with proposals to augment these management strategies with a system of protected areas. The volume argues that implementation of MPAs should be incremental and adaptive, through the design of areas not only to conserve resources, but also to help us learn how to manage marine species more effectively.
In Chapter 1 the methodological principles of systemization and visualization of multidimensional ecological information for its operational dissemination among potential users are stated. Their realization results in creation of the geographic-and ecologic model of marine basin as an information base for diagnosis of the marine ecosystem state, estimation of consequences of economic activity, and modelling of its changes with the use of mathematical tools. In Chapter 2 the geographic-and-ecological aspects of mathematical modelling of marine ecosystems, the possibilities and peculiarities of the most adequate models, the Russian hydrodynamic model of oil spills "SPILLMOD" and hydroecological model of organogenic compound transformation in the sea, are investigated. In the following six Chapters the examples of practical realization of geographic-and-ecological (as information source) and mathematical (as computing apparatus) modelling at the investigations of specific ecological problems associated with consequences of natural hazards and economic activity on aquatory and within the whole Black Sea basin are given.