Download Free Marine Biodiversity Book in PDF and EPUB Free Download. You can read online Marine Biodiversity and write the review.

Global Marine Biological Diversity presents the most up-to-date information and view on the challenge of conserving the living sea and how that challenge can be met.
The diversity of marine life is being affected dramatically by fishery operations, chemical pollution and eutrophication, alteration of physical habitat, exotic species invasion, and effects of other human activities. Effective solutions will require an expanded understanding of the patterns and processes that control the diversity of life in the sea. Understanding Marine Biodiversity outlines the current state of our knowledge, and propose research agenda on marine biological diversity. This agenda represents a fundamental change in studying the oceanâ€"emphasizing regional research across a range of space and time scales, enhancing the interface between taxonomy and ecology, and linking oceanographic and ecological approaches. Highlighted with examples and brief case studies, this volume illustrates the depth and breadth of undescribed marine biodiversity, explores critical environmental issues, advocates the use of regionally defined model systems, and identifies a series of key biodiversity research questions. The authors examine the utility of various research approachesâ€"theory and modeling, retrospective analysis, integration of biotic and oceanographic surveysâ€"and review recent advances in molecular genetics, instrumentation, and sampling techniques applicable to the research agenda. Throughout the book the critical role of taxonomy is emphasized. Informative to the scientist and accessible to the policymaker, Understanding Marine Biodiversity will be of specific interest to marine biologists, ecologists, oceanographers, and research administrators, and to government agencies responsible for utilizing, managing, and protecting the oceans.
'Marine Conservation Biology' brings together leading experts from around the world to apply the lessons and thinking of conservation biology to marine issues. The contributors cover what is threatening marine biodiversity and what humans can do to recover the biological integrity of the world's oceans.
Effective marine biodiversity conservation is dependent upon a clear scientific rationale for practical interventions. This book is intended to provide knowledge and tools for marine conservation practitioners and to identify issues and mechanisms for upper-level undergraduate and Masters students. It also provides sound guidance for marine biology field course work and professionals. The main focus is on benthic species living on or in the seabed and immediately above, rather than on commercial fisheries or highly mobile vertebrates. Such species, including algae and invertebrates, are fundamental to a stable and sustainable marine ecosystem. The book is a practical guide based on a clear exposition of the principles of marine ecology and species biology to demonstrate how marine conservation issues and mechanisms have been tackled worldwide and especially the criteria, structures and decision trees that practitioners and managers will find useful. Well illustrated with conceptual diagrams and flow charts, the book includes case study examples from both temperate and tropical marine environments.
Life began in the sea, and even today most of the deep diversity of the planet is marine. This is often forgotten, especially in tropical countries like Costa Rica, renowned for their rain forests and the multitude of life forms found therein. Thus this book focusing on marine diversity of Costa Rica is particularly welcome. How many marine species are there in Costa Rica? The authors report a total of 6,777 species, or 3. 5% of the world’s total. Yet the vast majority of marine species have yet to be formally described. Recent estimates of the numbers of species on coral reefs range from 1–9 million, so that the true number of marine species in Costa Rica is certainly far higher. In some groups the numbers are likely to be vastly higher because to date they have been so little studied. Only one species of nematode is reported, despite the fact that it has been said that nematodes are the most diverse of all marine groups. In better studied groups such as mollusks and crustaceans, reported numbers are in the thousands, but even in these groups many species remain to be described. Indeed the task of describing marine species is daunting – if there really are about 9 million marine species and Costa Rica has 3. 5% of them, then the total number would be over 300,000. Clearly, so much remains to be done that new approaches are needed. Genetic methods have en- mous promise in this regard.
Biodiversity loss in terrestrial environments associated with human activities has been appreciated as a major issue for some years now. What is less well documented is the effect of such activities, including climate change, on marine biodiversity. This pioneering book is the first to address this important but neglected topic, which is likely to be the key challenge for marine scientists in the near future. Using a multidisciplinary and a holistic approach, the book reveals how climatic variability controls biodiversity at time scales ranging from synoptic meteorological events to millions of years and at spatial scales ranging from local sites to the whole ocean. It shows how global change, including anthropogenic climate change, ocean acidification and more direct human influences such as exploitation, pollution and eutrophication may alter biodiversity, ecosystem functioning and regulating and provisioning services. The author proposes a theory termed the 'macroecological theory on the arrangement of life', which explains how biodiversity is organized and how it responds to climatic variability and anthropogenic climate change. The book concludes with recommendations for further research and theoretical development to identify oceanic areas in need of observation and gaps in current scientific knowledge. Many references and comparisons with the terrestrial realm are included in all chapters to better understand the universality of the relationships between biodiversity, climate and the environment. The book will serve as a textbook for all students and researchers of marine science and environmental change, but will also be accessible to the more general reader.
"This book is based on presentations made at the Malmö Conference by many of the most knowledgeable experts on both the on-going bbnj negotiations at the United Nations and on the well- established UNCLOS principles and rules. The Malmö Conference featured remarks by distinguished diplomats followed by six parts devoted to identifying the major issues at the bbnj negotiations"--
The diversity of marine life is being affected dramatically by fishery operations, chemical pollution and eutrophication, alteration of physical habitat, exotic species invasion, and effects of other human activities. Effective solutions will require an expanded understanding of the patterns and processes that control the diversity of life in the sea. Understanding Marine Biodiversity outlines the current state of our knowledge, and propose research agenda on marine biological diversity. This agenda represents a fundamental change in studying the oceanâ€"emphasizing regional research across a range of space and time scales, enhancing the interface between taxonomy and ecology, and linking oceanographic and ecological approaches. Highlighted with examples and brief case studies, this volume illustrates the depth and breadth of undescribed marine biodiversity, explores critical environmental issues, advocates the use of regionally defined model systems, and identifies a series of key biodiversity research questions. The authors examine the utility of various research approachesâ€"theory and modeling, retrospective analysis, integration of biotic and oceanographic surveysâ€"and review recent advances in molecular genetics, instrumentation, and sampling techniques applicable to the research agenda. Throughout the book the critical role of taxonomy is emphasized. Informative to the scientist and accessible to the policymaker, Understanding Marine Biodiversity will be of specific interest to marine biologists, ecologists, oceanographers, and research administrators, and to government agencies responsible for utilizing, managing, and protecting the oceans.
The Southern Ocean surrounding the Antarctic continent is vast, in particular, its history, its isolation, and climate, making it a unique "laboratory case" for experimental evolution, adaptation and ecology. Its evolutionary history of adaptation provide a wealth of information on the functioning of the biosphere and its potential. The Southern Ocean is the result of a history of nearly 40 million years marked by the opening of the Straits south of Australia and South America and intense cooling. The violence of its weather, its very low temperatures, the formation of huge ice-covered areas, as its isolation makes the Southern Ocean a world apart. This book discusses the consequences for the evolution, ecology and biodiversity of the region, including endemism, slowed metabolism, longevity, gigantism, and its larval stages; features which make this vast ocean a "natural laboratory" for exploring the ecological adaptive processes, scalable to work in extreme environmental conditions. Today, biodiversity of the Southern Ocean is facing global change, particularly in regional warming and acidification of water bodies. Unable to migrate further south, how will she cope, if any, to visitors from the North? Designed for curious readers to discover the immense ocean surrounding the most isolated and most inhospitable continent on the planet. Describes the Southern Ocean facing biodiversification due to global change Authored by scientists with experience of expeditions to the Southern Ocean
The number of species found at a given point on the planet varies by orders of magnitude, yet large-scale gradients in biodiversity appear to follow some very general patterns. Little mechanistic theory has been formulated to explain the emergence of observed gradients of biodiversity both on land and in the oceans. Based on a comprehensive empirical synthesis of global patterns of species diversity and their drivers, A Theory of Global Biodiversity develops and applies a new theory that can predict such patterns from few underlying processes. The authors show that global patterns of biodiversity fall into four consistent categories, according to where species live: on land or in coastal, pelagic, and deep ocean habitats. The fact that most species groups, from bacteria to whales, appear to follow similar biogeographic patterns of richness within these habitats points toward some underlying structuring principles. Based on empirical analyses of environmental correlates across these habitats, the authors combine aspects of neutral, metabolic, and niche theory into one unifying framework. Applying it to model terrestrial and marine realms, the authors demonstrate that a relatively simple theory that incorporates temperature and community size as driving variables is able to explain divergent patterns of species richness at a global scale. Integrating ecological and evolutionary perspectives, A Theory of Global Biodiversity yields surprising insights into the fundamental mechanisms that shape the distribution of life on our planet.