Download Free Mapping Biological Systems To Network Systems Book in PDF and EPUB Free Download. You can read online Mapping Biological Systems To Network Systems and write the review.

The book presents the challenges inherent in the paradigm shift of network systems from static to highly dynamic distributed systems – it proposes solutions that the symbiotic nature of biological systems can provide into altering networking systems to adapt to these changes. The author discuss how biological systems – which have the inherent capabilities of evolving, self-organizing, self-repairing and flourishing with time – are inspiring researchers to take opportunities from the biology domain and map them with the problems faced in network domain. The book revolves around the central idea of bio-inspired systems -- it begins by exploring why biology and computer network research are such a natural match. This is followed by presenting a broad overview of biologically inspired research in network systems -- it is classified by the biological field that inspired each topic and by the area of networking in which that topic lies. Each case elucidates how biological concepts have been most successfully applied in various domains. Nevertheless, it also presents a case study discussing the security aspects of wireless sensor networks and how biological solution stand out in comparison to optimized solutions. Furthermore, it also discusses novel biological solutions for solving problems in diverse engineering domains such as mechanical, electrical, civil, aerospace, energy and agriculture. The readers will not only get proper understanding of the bio inspired systems but also better insight for developing novel bio inspired solutions.
System Biology encompasses the knowledge from diverse fields such as Molecular Biology, Immunology, Genetics, Computational Biology, Mathematical Biology, etc. not only to address key questions that are not answerable by individual fields alone, but also to help in our understanding of the complexities of biological systems. Whole genome expression studies have provided us the means of studying the expression of thousands of genes under a particular condition and this technique had been widely used to find out the role of key macromolecules that are involved in biological signaling pathways. However, making sense of the underlying complexity is only possible if we interconnect various signaling pathways into human and computer readable network maps. These maps can then be used to classify and study individual components involved in a particular phenomenon. Apart from transcriptomics, several individual gene studies have resulted in adding to our knowledge of key components that are involved in a signaling pathway. It therefore becomes imperative to take into account of these studies also, while constructing our network maps to highlight the interconnectedness of the entire signaling pathways and the role of that particular individual protein in the pathway. This collection of articles will contain a collection of pioneering work done by scientists working in regulatory signaling networks and the use of large scale gene expression and omics data. The distinctive features of this book would be: Act a single source of information to understand the various components of different signaling network (roadmap of biochemical pathways, the nature of a molecule of interest in a particular pathway, etc.), Serve as a platform to highlight the key findings in this highly volatile and evolving field, and Provide answers to various techniques both related to microarray and cell signaling to the readers.
This book presents a selection of papers from the 2017 World Conference on Information Systems and Technologies (WorldCIST'17), held between the 11st and 13th of April 2017 at Porto Santo Island, Madeira, Portugal. WorldCIST is a global forum for researchers and practitioners to present and discuss recent results and innovations, current trends, professional experiences and challenges involved in modern Information Systems and Technologies research, together with technological developments and applications. The main topics covered are: Information and Knowledge Management; Organizational Models and Information Systems; Software and Systems Modeling; Software Systems, Architectures, Applications and Tools; Multimedia Systems and Applications; Computer Networks, Mobility and Pervasive Systems; Intelligent and Decision Support Systems; Big Data Analytics and Applications; Human–Computer Interaction; Ethics, Computers & Security; Health Informatics; Information Technologies in Education; and Information Technologies in Radiocommunications.
Networked systems are all around us. The accumulated evidence of systems as complex as a cell cannot be fully understood by studying only their isolated constituents, giving rise to a new area of interest in research ? the study of complex networks. In a broad sense, biological networks have been one of the most studied networks, and the field has benefited from many important contributions. By understanding and modeling the structure of a biological network, a better perception of its dynamical and functional behavior is to be expected. This unique book compiles the most relevant results and novel insights provided by network theory in the biological sciences, ranging from the structure and dynamics of the brain to cellular and protein networks and to population-level biology.
This volume presents a timely and comprehensive overview of biological networks at all organization levels in the spirit of the complex system approach. It discusses the transversal issues and fundamental principles as well as the overall structure, dynamics, and modeling of a wide array of biological networks at the molecular, cellular, and population levels. Anchored in both empirical data and a strong theoretical background, the book therefore lends valuable credence to the complex systems approach.
In recent years, most applications deal with constraint decision-making systems as problems are based on imprecise information and parameters. It is difficult to understand the nature of data based on applications and it requires a specific model for understanding the nature of the system. Further research on constraint decision-making systems in engineering is required. Constraint Decision-Making Systems in Engineering derives and explores several types of constraint decisions in engineering and focuses on new and innovative conclusions based on problems, robust and efficient systems, and linear and non-linear applications. Covering topics such as fault detection, data mining techniques, and knowledge-based management, this premier reference source is an essential resource for engineers, managers, computer scientists, students and educators of higher education, librarians, researchers, and academicians.
This book delivers a comprehensive and insightful account of applying mathematical modelling approaches to very large biological systems and networks—a fundamental aspect of computational systems biology. The book covers key modelling paradigms in detail, while at the same time retaining a simplicity that will appeal to those from less quantitative fields. Key Features: A hands-on approach to modelling Covers a broad spectrum of modelling, from static networks to dynamic models and constraint-based models Thoughtful exercises to test and enable understanding of concepts State-of-the-art chapters on exciting new developments, like community modelling and biological circuit design Emphasis on coding and software tools for systems biology Companion website featuring lecture videos, figure slides, codes, supplementary exercises, further reading, and appendices: https://ramanlab.github.io/SysBioBook/ An Introduction to Computational Systems Biology: Systems-Level Modelling of Cellular Networks is highly multi-disciplinary and will appeal to biologists, engineers, computer scientists, mathematicians and others.
The unprecedented amount of data produced with high-throughput experimentation forces biologists to employ mathematical representation and computation to glean meaningful information in systems-level biology. Applying this approach to the underlying molecular mechanisms of tumorgenesis, cancer research is enjoying a series of new discoveries and biological insights. Unique in its dualistic approach, this book introduces the concepts and theories of systems biology and their applications in cancer research. It presents basic cancer biology and cutting-edge topics of cancer research for computational biologists alongside systems biology analysis tools for experimental biologists.
Cereals like wheat, rice, maize, and barley have long been the dominant crops in agriculture, providing a significant portion of our food supply. Plant breeders and geneticists have always been interested in improving the yield and quality of cereals. The primary challenges in cereal breeding lie in adapting to climate change and enhancing yield and stress tolerance. In recent years, omics approaches such as genomics, transcriptomics, proteomics, and metabolomics have emerged as valuable tools to understand the genetic and molecular basis of cereal development under optimum and stress conditions. However, studying individual datasets for different cereals has limited our comprehensive understanding of complex traits and biological networks. To overcome this limitation, a systems biology approach is necessary. Systems biology integrates multiple omics data, modeling, and cell activity prediction to gain a holistic understanding of biological processes. By considering the whole system and its interactions, rather than isolated components, researchers can develop predictive models and even re-engineer cells. In the context of cereal improvement, systems biology can play a crucial role in identifying and introducing desirable traits such as yield, quality, and stress tolerance. It may help researchers uncover the molecular underpinnings of complex traits and offer insights for enhancing cereals on a national and international scale. The book explores available omics resources, the integration of multi-omics data, and systems biology methods, focusing on their applications in cereals breeding and research. It highlights current and innovative strategies to understand complex traits, improve yield, and enhance resistance to biotic and abiotic stresses. It also addresses the challenges and opportunities associated with modeling multi-omics data and analyzing systems-level information. By leveraging systems biology and integrated omics research, this book aims to redefine the future research agenda for cereal improvement.
The book is a comprehensive guide that explores the use of artificial intelligence and machine learning in drug discovery and development covering a range of topics, including the use of molecular modeling, docking, identifying targets, selecting compounds, and optimizing drugs. The intersection of Artificial Intelligence (AI) and Machine Learning (ML) within the field of drug design and development represents a pivotal moment in the history of healthcare and pharmaceuticals. The remarkable synergy between cutting-edge technology and the life sciences has ushered in a new era of possibilities, offering unprecedented opportunities, formidable challenges, and a tantalizing glimpse into the future of medicine. AI can be applied to all the key areas of the pharmaceutical industry, such as drug discovery and development, drug repurposing, and improving productivity within a short period. Contemporary methods have shown promising results in facilitating the discovery of drugs to target different diseases. Moreover, AI helps in predicting the efficacy and safety of molecules and gives researchers a much broader chemical pallet for the selection of the best molecules for drug testing and delivery. In this context, drug repurposing is another important topic where AI can have a substantial impact. With the vast amount of clinical and pharmaceutical data available to date, AI algorithms find suitable drugs that can be repurposed for alternative use in medicine. This book is a comprehensive exploration of this dynamic and rapidly evolving field. In an era where precision and efficiency are paramount in drug discovery, AI and ML have emerged as transformative tools, reshaping the way we identify, design, and develop pharmaceuticals. This book is a testament to the profound impact these technologies have had and will continue to have on the pharmaceutical industry, healthcare, and ultimately, patient well-being. The editors of this volume have assembled a distinguished group of experts, researchers, and thought leaders from both the AI, ML, and pharmaceutical domains. Their collective knowledge and insights illuminate the multifaceted landscape of AI and ML in drug design and development, offering a roadmap for navigating its complexities and harnessing its potential. In each section, readers will find a rich tapestry of knowledge, case studies, and expert opinions, providing a 360-degree view of AI and ML’s role in drug design and development. Whether you are a researcher, scientist, industry professional, policymaker, or simply curious about the future of medicine, this book offers 19 state-of-the-art chapters providing valuable insights and a compass to navigate the exciting journey ahead. Audience The book is a valuable resource for a wide range of professionals in the pharmaceutical and allied industries including researchers, scientists, engineers, and laboratory workers in the field of drug discovery and development, who want to learn about the latest techniques in machine learning and AI, as well as information technology professionals who are interested in the application of machine learning and artificial intelligence in drug development.