Download Free Managing Discovery In The Life Sciences Book in PDF and EPUB Free Download. You can read online Managing Discovery In The Life Sciences and write the review.

Addresses in roughly equal measure the science and management behind several recent marketable biomedical innovations.
In this book, distinguished scholars Philip A. Rea, Mark V. Pauly, and Lawton R. Burns explore the science and management behind marketable biomedical innovations. They look at how the science actually played out through the interplay of personalities, the cultures within and between academic and corporate entities, and the significance of serendipity not as a mysterious phenomenon but one intrinsic to the successes and failures of the experimental approach. With newly aggregated data and case studies, they consider the fundamental economic underpinnings of investor-driven discovery management, not as an obstacle or deficiency as its critics would contend or as something beyond reproach as some of its proponents might claim, but as the only means by which scientists and managers can navigate the unknowable to discover new products and decide how to sell them so as to maximize the likelihood of establishing a sustainable pipeline for still more marketable biomedical innovations.
“I thoroughly enjoyed reading this book as it has taken me on a journey through time, across the globe and through multiple disciplines. Indeed, we need to be thinking about these concepts and applying them every day to do our jobs better.” Farah Magrabi, Macquarie University, Australia “The reader will find intriguing not only the title but also the content of the book. I’m also pleased that public health, and even more specifically epidemiology has an important place in this ambitious discussion.” Elena Andresen, Oregon Health & Science University, USA “This book is very well written and addresses an important topic. It presents many reasons why basic scientists/researchers should establish collaborations and access information outside traditional means and not limit thinking but rather expand such and perhaps develop more innovative and translational research ventures that will advance science and not move it laterally.” Gerald Pepe, Eastern Virginia Medical School, USA “This book gathers logically and presents interestingly (with many examples) the qualities and attitudes a researcher must possess in order to become successful. On the long run, the deep and carefully reexamined research will be the one that lasts.” Zoltán Néda, Babeş-Bolyai University, Romania “I really liked the five pillars delineating the components of humanism in research. This book has made a major contribution to the research ethics literature.” David Fleming, University of Missouri, USA A comprehensive review of the research phase of life sciences from design to discovery with suggestions to improve innovation This vital resource explores the creative processes leading to biomedical innovation, identifies the obstacles and best practices of innovative laboratories, and supports the production of effective science. Innovative Research in Life Sciences draws on lessons from 400 award-winning scientists and research from leading universities. The book explores the innovative process in life sciences and puts the focus on how great ideas are born and become landmark scientific discoveries. The text provides a unique resource for developing professional competencies and applied skills of life sciences researchers. The book examines what happens before the scientific paper is submitted for publication or the innovation becomes legally protected. This phase is the most neglected but most exciting in the process of scientific creativity and innovation. The author identifies twelve competencies of innovative biomedical researchers that described and analyzed. This important resource: Highlights the research phase from design to discovery that precedes innovation disclosure Offers a step by step explanation of how to improve innovation Offers solutions for improving research and innovation productivity in the life sciences Contains a variety of statistical databases and a vast number of stories about individual discoveries Includes a process of published studies and national statistics of biomedical research and reviews the performance of research labs and academic institutions Written for academics and researchers in biomedicine, pharmaceutical science, life sciences, drug discovery, pharmacology, Innovative Research in Life Sciences offers a guide to the creative processes leading to biomedical innovation and identifies the best practices of innovative scientists and laboratories.
The free/open source approach has grown from a minor activity to become a significant producer of robust, task-orientated software for a wide variety of situations and applications. To life science informatics groups, these systems present an appealing proposition - high quality software at a very attractive price. Open source software in life science research considers how industry and applied research groups have embraced these resources, discussing practical implementations that address real-world business problems.The book is divided into four parts. Part one looks at laboratory data management and chemical informatics, covering software such as Bioclipse, OpenTox, ImageJ and KNIME. In part two, the focus turns to genomics and bioinformatics tools, with chapters examining GenomicsTools and EBI Atlas software, as well as the practicalities of setting up an 'omics' platform and managing large volumes of data. Chapters in part three examine information and knowledge management, covering a range of topics including software for web-based collaboration, open source search and visualisation technologies for scientific business applications, and specific software such as DesignTracker and Utopia Documents. Part four looks at semantic technologies such as Semantic MediaWiki, TripleMap and Chem2Bio2RDF, before part five examines clinical analytics, and validation and regulatory compliance of free/open source software. Finally, the book concludes by looking at future perspectives and the economics and free/open source software in industry. - Discusses a broad range of applications from a variety of sectors - Provides a unique perspective on work normally performed behind closed doors - Highlights the criteria used to compare and assess different approaches to solving problems
David Klahr suggests that we now know enough about cognition--and hence about everyday thinking--to advance our understanding of scientific thinking.
The global center of gravity in life sciences innovation is rapidly shifting to emerging economies. In The New Players in Life Science Innovation, Tomasz Mroczkowski explains how China and other new economic powers are rapidly gaining leadership positions, and thoroughly assesses the implications. Mroczkowski discusses the sophisticated innovation strategies and reforms these nations have implemented: approaches that don't rely on market forces alone, and are achieving remarkable success. Next, he previews the emerging global "bio-economy," in which life science discoveries will be applied pervasively in markets ranging from health to fuels. As R&D in the West becomes increasingly costly, Mroczkowski introduces new options for partnering with new players in the field. He thoroughly covers the globalization of clinical trials, showing how it offers opportunities that go far beyond cost reduction, and assessing the unique challenges it presents. Offering examples from China to Dubai to India, he carefully assesses the business models driving today's newest centers of innovation. Readers will find up-to-date coverage of bioparks, technology zones, and emerging clusters, and realistic assessments of global R&D collaboration strategies such as those of Eli Lilly, Merck, Novartis, and IBM. With innovation-driven industries increasingly dominating the global economy, this book's insights are indispensable for every R&D decision-maker and investor.
Innovative technologies are changing the way research is performed, preserved, and communicated. Managing Scientific Information and Research Data explores how these technologies are used and provides detailed analysis of the approaches and tools developed to manage scientific information and data. Following an introduction, the book is then divided into 15 chapters discussing the changes in scientific communication; new models of publishing and peer review; ethics in scientific communication; preservation of data; discovery tools; discipline-specific practices of researchers for gathering and using scientific information; academic social networks; bibliographic management tools; information literacy and the information needs of students and researchers; the involvement of academic libraries in eScience and the new opportunities it presents to librarians; and interviews with experts in scientific information and publishing. - Promotes innovative technologies for creating, sharing and managing scientific content - Presents new models of scientific publishing, peer review, and dissemination of information - Serves as a practical guide for researchers, students, and librarians on how to discover, filter, and manage scientific information - Advocates for the adoption of unique author identifiers such as ORCID and ResearcherID - Looks into new tools that make scientific information easy to discover and manage - Shows what eScience is and why it is becoming a priority for academic libraries - Demonstrates how Electronic Laboratory Notebooks can be used to record, store, share, and manage research data - Shows how social media and the new area of Altmetrics increase researchers' visibility and measure attention to their research - Directs to sources for datasets - Provides directions on choosing and using bibliographic management tools - Critically examines the metrics used to evaluate research impact - Aids strategic thinking and informs decision making
Proteomic and Metabolomic Approaches to Biomarker Discovery demonstrates how to leverage biomarkers to improve accuracy and reduce errors in research. Disease biomarker discovery is one of the most vibrant and important areas of research today, as the identification of reliable biomarkers has an enormous impact on disease diagnosis, selection of treatment regimens, and therapeutic monitoring. Various techniques are used in the biomarker discovery process, including techniques used in proteomics, the study of the proteins that make up an organism, and metabolomics, the study of chemical fingerprints created from cellular processes. Proteomic and Metabolomic Approaches to Biomarker Discovery is the only publication that covers techniques from both proteomics and metabolomics and includes all steps involved in biomarker discovery, from study design to study execution. The book describes methods, and presents a standard operating procedure for sample selection, preparation, and storage, as well as data analysis and modeling. This new standard effectively eliminates the differing methodologies used in studies and creates a unified approach. Readers will learn the advantages and disadvantages of the various techniques discussed, as well as potential difficulties inherent to all steps in the biomarker discovery process. A vital resource for biochemists, biologists, analytical chemists, bioanalytical chemists, clinical and medical technicians, researchers in pharmaceuticals, and graduate students, Proteomic and Metabolomic Approaches to Biomarker Discovery provides the information needed to reduce clinical error in the execution of research. - Describes the use of biomarkers to reduce clinical errors in research - Includes techniques from a range of biomarker discoveries - Covers all steps involved in biomarker discovery, from study design to study execution
This book constitutes the thoroughly refereed post-conference proceedings of the Second International Joint Conference on Knowledge Discovery, Knowledge Engineering, and Knowledge Management, IC3K 2010, held in Valencia, Spain, in October 2010. This book includes revised and extended versions of a strict selection of the best papers presented at the conference; 26 revised full papers together with 2 invited lectures were carefully reviewed and selected from 369 submissions. According to the three covered conferences KDIR 2010, KEOD 2010, and KMIS 2010, the papers are organized in topical sections on knowledge discovery and information retrieval, knowledge engineering and ontology development, and on knowledge management and information sharing.
Biological collections are a critical part of the nation's science and innovation infrastructure and a fundamental resource for understanding the natural world. Biological collections underpin basic science discoveries as well as deepen our understanding of many challenges such as global change, biodiversity loss, sustainable food production, ecosystem conservation, and improving human health and security. They are important resources for education, both in formal training for the science and technology workforce, and in informal learning through schools, citizen science programs, and adult learning. However, the sustainability of biological collections is under threat. Without enhanced strategic leadership and investments in their infrastructure and growth many biological collections could be lost. Biological Collections: Ensuring Critical Research and Education for the 21st Century recommends approaches for biological collections to develop long-term financial sustainability, advance digitization, recruit and support a diverse workforce, and upgrade and maintain a robust physical infrastructure in order to continue serving science and society. The aim of the report is to stimulate a national discussion regarding the goals and strategies needed to ensure that U.S. biological collections not only thrive but continue to grow throughout the 21st century and beyond.