Download Free Managerial Analytics Book in PDF and EPUB Free Download. You can read online Managerial Analytics and write the review.

Analytics and Big Data Demystified, The up-to-the-minute introduction for every manager, Everything you need to know to get results!, Concepts, applications, tools, techniques, and pitfalls to avoid, How to derive more value from tools and data you already own, Want to start leveraging analytics and Big Data for profit? Managerial Analytics is your ideal first resource. Whatever your industry or management role, this up-to-date guide will help you get started fast, get started right, and quickly start driving value. Book jacket.
To manage projects, you must not only control schedules and costs: you must also manage growing operational uncertainty. Today’s powerful analytics tools and methods can help you do all of this far more successfully. In Project Management Analytics, Harjit Singh shows how to bring greater evidence-based clarity and rationality to all your key decisions throughout the full project lifecycle. Singh identifies the components and characteristics of a good project decision and shows how to improve decisions by using predictive, prescriptive, statistical, and other methods. You’ll learn how to mitigate risks by identifying meaningful historical patterns and trends; optimize allocation and use of scarce resources within project constraints; automate data-driven decision-making processes based on huge data sets; and effectively handle multiple interrelated decision criteria. Singh also helps you integrate analytics into the project management methods you already use, combining today’s best analytical techniques with proven approaches such as PMI PMBOK® and Lean Six Sigma. Project managers can no longer rely on vague impressions or seat-of-the-pants intuition. Fortunately, you don’t have to. With Project Management Analytics, you can use facts, evidence, and knowledge—and get far better results. Achieve efficient, reliable, consistent, and fact-based project decision-making Systematically bring data and objective analysis to key project decisions Avoid “garbage in, garbage out” Properly collect, store, analyze, and interpret your project-related data Optimize multi-criteria decisions in large group environments Use the Analytic Hierarchy Process (AHP) to improve complex real-world decisions Streamline projects the way you streamline other business processes Leverage data-driven Lean Six Sigma to manage projects more effectively
Big data, analytics, and artificial intelligence are revolutionizing work, management, and lifestyles and are becoming disruptive technologies for healthcare, e-commerce, and web services. However, many fundamental, technological, and managerial issues for developing and applying intelligent big data analytics in these fields have yet to be addressed. Managerial Perspectives on Intelligent Big Data Analytics is a collection of innovative research that discusses the integration and application of artificial intelligence, business intelligence, digital transformation, and intelligent big data analytics from a perspective of computing, service, and management. While highlighting topics including e-commerce, machine learning, and fuzzy logic, this book is ideally designed for students, government officials, data scientists, managers, consultants, analysts, IT specialists, academicians, researchers, and industry professionals in fields that include big data, artificial intelligence, computing, and commerce.
Analytics is one of a number of terms which are used to describe a data-driven more scientific approach to management. Ability in analytics is an essential management skill: knowledge of data and analytics helps the manager to analyze decision situations, prevent problem situations from arising, identify new opportunities, and often enables many millions of dollars to be added to the bottom line for the organization. The objective of this book is to introduce analytics from the perspective of the general manager of a corporation. Rather than examine the details or attempt an encyclopaedic review of the field, this text emphasizes the strategic role that analytics is playing in globally competitive corporations today. The chapters of this book are organized in two main parts. The first part introduces a problem area and presents some basic analytical concepts that have been successfully used to address the problem area. The objective of this material is to provide the student, the manager of the future, with a general understanding of the tools and techniques used by the analyst.
Data Analytics in Project Management. Data analytics plays a crucial role in business analytics. Without a rigid approach to analyzing data, there is no way to glean insights from it. Business analytics ensures the expected value of change while that change is implemented by projects in the business environment. Due to the significant increase in the number of projects and the amount of data associated with them, it is crucial to understand the areas in which data analytics can be applied in project management. This book addresses data analytics in relation to key areas, approaches, and methods in project management. It examines: • Risk management • The role of the project management office (PMO) • Planning and resource management • Project portfolio management • Earned value method (EVM) • Big Data • Software support • Data mining • Decision-making • Agile project management Data analytics in project management is of increasing importance and extremely challenging. There is rapid multiplication of data volumes, and, at the same time, the structure of the data is more complex. Digging through exabytes and zettabytes of data is a technological challenge in and of itself. How project management creates value through data analytics is crucial. Data Analytics in Project Management addresses the most common issues of applying data analytics in project management. The book supports theory with numerous examples and case studies and is a resource for academics and practitioners alike. It is a thought-provoking examination of data analytics applications that is valuable for projects today and those in the future.
This exciting new textbook offers an accessible, business-focused overview of the key theoretical concepts underpinning modern data analytics. It provides engaging and practical advice on using the key software tools, including SAS Visual Analytics, R and DataRobot, that are used in organisations to help make effective data-driven decisions. Combining theory with hands-on practical examples, this essential text includes cutting edge coverage of new areas of interest including social media analytics, design thinking and the ethical implications of using big data. A wealth of learning features including exercises, cases, online resources and data sets help students to develop analytic problem-solving skills. With its management perspective on analytics and its coverage of a range of popular software tools, this is an ideal essential text for upper-level undergraduate, postgraduate and MBA students. It is also ideal for practitioners wanting to understand the broader organisational context of big data analysis and to engage critically with the tools and techniques of business analytics.
Accessible and concise, this exciting new textbook examines data analytics from a managerial and organizational perspective and looks at how they can help managers become more effective decision-makers. The book successfully combines theory with practical application, featuring case studies, examples and a ‘critical incidents’ feature that make these topics engaging and relevant for students of business and management. The book features chapters on cutting-edge topics, including: • Big data • Analytics • Managing emerging technologies and decision-making • Managing the ethics, security, privacy and legal aspects of data-driven decision-making The book is accompanied by an Instructor’s Manual, PowerPoint slides and access to journal articles. Suitable for management students studying business analytics and decision-making at undergraduate, postgraduate and MBA levels.
This book is about innovation, big data, and data science seen from a business perspective. Big data is a buzzword nowadays, and there is a growing necessity within practitioners to understand better the phenomenon, starting from a clear stated definition. This book aims to be a starting reading for executives who want (and need) to keep the pace with the technological breakthrough introduced by new analytical techniques and piles of data. Common myths about big data will be explained, and a series of different strategic approaches will be provided. By browsing the book, it will be possible to learn how to implement a big data strategy and how to use a maturity framework to monitor the progress of the data science team, as well as how to move forward from one stage to the next. Crucial challenges related to big data will be discussed, where some of them are more general - such as ethics, privacy, and ownership – while others concern more specific business situations (e.g., initial public offering, growth strategies, etc.). The important matter of selecting the right skills and people for an effective team will be extensively explained, and practical ways to recognize them and understanding their personalities will be provided. Finally, few relevant technological future trends will be acknowledged (i.e., IoT, Artificial intelligence, blockchain, etc.), especially for their close relation with the increasing amount of data and our ability to analyse them faster and more effectively.
Defines common ground at the interface of strategy and management science and unites the topics with an original approach vital for strategy students, researchers and managers Strategic Analytics: Integrating Management Science and Strategy combines strategy content with strategy process through the lenses of management science, masterfully defining the common ground that unites both fields. Each chapter starts with the perspective of a certain strategy problem, such as competition, but continues with an explanation of the strategy process using management science tools such as simulation. Facilitating the process of strategic decision making through the lens of management science, the author integrates topics that are usually in conflict for MBAs: strategy and quantitative methods. Strategic Analytics features multiple international real-life case studies and examples, business issues for further research and theory review questions and exercises at the end of each chapter. Strategic Analytics starts by introducing readers to strategic management. It then goes on to cover: managerial capabilities for a complex world; politics, economy, society, technology, and environment; external environments known as exogenous factors (PESTE) and endogenous factors (industry); industry dynamics; industry evolution; competitive advantage; dynamic resource management; organisational design; performance measurement system; the life cycle of organisations from start-ups; maturity for maintaining profitability and growth; and finally, regeneration. Developed from the author's own Strategy Analytics course at Warwick Business School, personal experience as consultant, and in consultation with other leading scholars Uses management science to facilitate the process of strategic decision making Chapters structured with chapter objectives, summaries, short case studies, tables, student exercises, references and management science models Accompanied by a supporting website Aimed at both academics and practitioners, Strategic Analytics is an ideal text for postgraduates and advanced undergraduate students of business and management.
"International Institute for Analytics"--Dust jacket.